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Abstract— This paper describes MATISSE, a MATLAB to C 

compiler targeting embedded systems that is based on Strategic 

and Aspect-Oriented Programming concepts. MATISSE takes as 

input: (1) MATLAB code and (2) LARA aspects related to types 

and shapes, code insertion/removal, and specialization based 

directives defining default variable values. In this paper we also 

illustrate the use of MATISSE in leveraging data types and 

shapes to generate customized C code suitable for high-level 

hardware synthesis tools. The preliminary experimental results 

presented here reveal the described approach to yield perfor-

mance results for the resulting hardware and software references 

implementations that are comparable in terms of performance 

with hand-crafted solutions but derived automatically at a frac-

tion of the cost.  

Keywords— MATLAB, Source-to-Source Compilers, Aspect-

Oriented Programming, LARA, Embedded Systems 

I.  INTRODUCTION 

MATLAB [1] is a de facto standard high-level programming 
language and interactive numerical computing environment in 
many domains in engineering and science, including embedded 
computing as it is ubiquitously used by engineers to quickly 
develop and evaluate their solutions. The flexibility of 
MATLAB, however, relies on runtime interpretation (and JIT 
compilation) as the language lacks type/shape information, in 
particular when manipulating arrays. Due to advances in JIT 
compilation and the use of pre-compiled libraries for the most 
processor-intensive functions, the MATLAB runtime currently 
exhibits acceptable performance. In many embedded system 
settings, however, the use of a MATLAB runtime is infeasible, 
due to performance and/or resource constraints. To address this 
potential shortcoming, a typical solution relies on the develop-
ment of an auxiliary reference implementation in executable 
code derived from imperative languages such as C/C++ once 
the base or original MATLAB code has been validated. This 
reference, C/C++ code, must then in turn be validated against 
the output of the MATLAB code resulting on a lengthy and er-
ror prone process that further complicates the overall applica-
tion development cycle and cost. The existence of two code 
specifications (the original prototypical MATLAB code and the 
reference C/C++ code) also exacerbates maintenance costs. 

An alternative approach relies on a compilation tool to per-
form advanced analyses and generate a reference C/C++ code 
directly from MATLAB thus greatly reducing the lengthy user 
intervention. In our approach, we explore the use Aspect-
Oriented Programming (AOP) [2][3] concepts, using the 
LARA language [4][5] as a vehicle to convey information to 

the compiler regarding types and array variable shapes. The 
compiler uses the user-provided information complementing 
and checking its consistency against the information it can de-
rive from its own analyses. 

As to the compiler infrastructure, we rely on the concept of 
strategic programming [6] to develop a modular and flexible 
compiler framework. The infrastructure uses TOM [7], a lan-
guage extension designed to manipulate tree structures, to at-
tain a built-in rewriting system for analyses and transfor-
mations. The end result is a synergy between compiler analysis 
and the user that allows the compiler to generate very high 
code quality from MATLAB specifications and the possibility to 
generate different C code versions, a key capability when tar-
geting different embedded systems. In addition, the use of a 
well-known mature strategic programming system such as 
TOM allows our compiler infrastructure to be easily extended 
in comparison to other approaches using proprietary data-
structures and implementations.  

Even when a MATLAB compiler integrates sophisticated 
type and shape inference mechanisms, there is often the need to 
enforce additional characteristics or features. A common case 
is the multitude of target embedded architectures that need to 
be considered, hampering the compiler on generating efficient 
codes without user’s intervention. In addition in some cases 
developers need to explore the possible solutions and to use 
specific data types according to accuracy requirements in the 
desired solution.  

This paper mainly focuses on the following aspects of the 
MATISSE [8] compiler: 

- It describes the overall architecture of the MATISSE com-
piler. This compiler is developed in Java exhibiting an ex-
tremely modular software architecture that can be easily 
augmented with specific transformations and code genera-
tion steps, thus facilitating compiler development. 

- It describes the use of LARA to complement the compiler 
analyses for types and shapes of array variables in MATLAB 
programs. 

- It presents experimental results of the use of the compiler to 
generate C code from MATLAB examples, guided by 
LARA specifications with different arithmetic precision 
contexts and specific array shapes, and targeting both soft-
ware and hardware implementations (via VHDL code de-
scriptions). 



We also describe the aggressive application of array linear-
ization for code generation, an important low-level code gener-
ation optimization. The performance results are very promising 
as the generated C codes are very competitive with the hand-
crafted codes. The experiments described here are also clear 
evidence of the efficiency and effectiveness of our approach 
when generating different code versions from the same input 
MATLAB code, which is needed when exploring and re-
targeting different architectures.  

This paper is organized as follows. Section II presents the 
MATISSE framework and describes its architecture with par-
ticular emphasis on its code generation process. Section III 
presents experimental results. Section IV presents the related 
work and finally, Section V concludes the paper. 

II. MATISSE 

MATISSE is a MATLAB compiler framework leveraging 
user knowledge and translation constraints. Currently it sup-
ports a subset of MATLAB as its input, and generates MATLAB 
and C code (see Fig. 1). It uses LARA aspects to guide the ap-
plication of source-to-source transformations in its internal 
high-level code representation, as well as variable type and 
shape definitions when generating C code from its intermediate 
representation. MATISSE relies on an automated process 
called weaving, which combines application code sources and 
LARA aspects to derive an augmented application at compile-
time that satisfies specific concerns described in aspects. 

  

Fig. 1. The MATISSE compiler framework. 

MATISSE receives as input: (1) MATLAB code and (2) 
LARA aspects related to types and shapes, code inser-
tion/removal, and specialization directives. It generates C code 
that can be used by third-party design-flows targeting soft-
ware/hardware systems. For the purpose of testing, monitoring, 
and specialization, MATISSE also generates MATLAB code. 

The knowledge regarding data types and shapes, provided 
by LARA aspects, allows MATISSE to generate both more 
efficient C code and stylized C code that conforms to the input 
requirements of specific tools of a given toolchain. A common 

example includes the restructuring of source code and the use 
of statically declared array variables to be compliant with the 
requirements of high-level synthesis tools (e.g., Catapult C). 

MATISSE can be used as a source-to-source code trans-
formation and instrumentation tool allowing developers to 
quickly and reliably generate reference C implementations, a 
key step in the deployment of embedded system designs. The 
transformation stage of the compiler performs weaving actions 
such as insertion of code, definitions of types and shapes, and 
code specialization based on default values. 

A. Compiler Architecture 

The input to the MATISSE compiler is a set of MATLAB 
files and LARA aspects. The MATLAB files are parsed and 
represented as a tree-based intermediate representation 
(MATLAB-IR or MIR). This MIR is then input to a LARA 
Weaver (ir2ir stage). This weaver is based on strategic pro-
gramming techniques for performing transformations, inser-
tion/removal of code, as well as code specialization based on 
LARA aspects. Integrated in the ir2ir stage are components 
responsible for the translation of the MIR to a TOM [7] com-
patible IR (named TIR) enabling the use of TOM and its pow-
erful mechanisms to program tree-transformation strategies. As 
part of the ir2ir, we developed a flexible mechanism to define 
the semantic rules to be used in type conversions when dealing 
with arithmetic expressions, of particular importance in the 
presence of specialized fixed-point representations.  

The entire MATISSE infrastructure allows ir2ir to deal 
with a weaving process controlled by LARA. This infrastruc-
ture uses an interpreter to process LARA aspects and strategies 
controlling the weaving at the TIR level. TIR represents the 
input MATLAB code as expression trees directly obtained by 
the AST produced by the MATISSE front-end. The transfor-
mations in ir2ir use TOM capabilities to manipulate tree struc-
tures. Pattern matching is used to find specific patterns of data-
structures in the TIR where transformations are applied. The 
use of TOM allows us to achieve a flexible compiler infrastruc-
ture as transformations rules are described using TOM specifi-
cations and thus extensively use strategic programming tech-
niques [6]. By using the advanced capability of TOM regarding 
rewriting rules and strategies, a compiler infrastructure is able 
to accommodate easily new transformations as required, main-
taining, we believe, a systematic, non-intrusive, approach. 

The C code generator (ir2c) component of the MATISSE 
compiler allows us to generate ANSI-C reference codes from 
MIR representations. According to the complementary infor-
mation and/or code inserted for monitoring, this C code genera-
tor phase may produce different code versions for the same 
MATLAB input program. These code versions reflect different 
implementations, bearing in mind the target architecture. The 
current version of ir2c supports most MATLAB operators over 
scalars, but includes restrictions when dealing with matrices. 
At the core of the ir2c back-end is a translation of MIR repre-
sentations to an intermediate representation (named CIR) more 
suitable for generating C code. Although the CIR strictly repre-
sents C, it is augmented to help the MATLAB conversion, for 
example, by providing (several implementations of) matrix as 
one of its base types. CIR is also used as a bridge for MATLAB 
to C transformations.  
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Source MATLAB code generation (ir2matlab back-end) is 
straightforward from the MIR representation, possibly extend-
ed/transformed by compiler analysis and/or by the weaving 
process, which already represents MATLAB input code. The 
code generated by ir2matlab provides the user with the possi-
bility to compare and validate results between the original and 
transformed variants of the input MATLAB code. 

B. Type and Shape Inference Analyses 

MATLAB is a weakly typed language whose types are im-
plicitly converted. It is also a dynamically typed language, 
whose variables can be assigned without type declaration, and 
their types can even change at runtime. This is in stark contrast 
with C, which has static typing and needs the types of all varia-
bles to be declared. Additionally, in C, variables can have only 
one type during their entire lifetime. 

When converting MATLAB source code to C, it is necessary 
to statically determine the types used by each function and by 
the variables manipulated. This can be a challenge, as the same 
MATLAB function can have very different C implementations, 
depending on the types of its variables. Fortunately, defining 
the types of the arguments of a MATLAB function is often 
enough to infer the remaining types of variables the function 
manipulates. Still, when using statically declared arrays (as 
opposed to dynamically allocated arrays) it is also necessary to 
determine the shape of the arrays at compile time.  

The data-flow type inference analysis uses a simple data-
flow analysis approach [9] where type information is derived 
by processing each MATLAB statement, complemented with 
information provided by “aspect files”, which can define the 
type and shape of any variable. In most cases, minimal type 
and shape definitions are needed as a data-flow analysis allows 
the compiler to propagate types and shapes from the main func-
tion to the invoked functions. Types can be set by explicitly 
indicating the type in an aspect file, or by the use of pre-
defined allocation functions (e.g., zeros, ones, eye) and assign-
ment statements. This information is then propagated along 
control-flow edges of each of the variable’s use and in many 
cases updated and extended by information determined in other 
assignments (e.g., information about what value the variable 
might contain). For instance, an allocation of a variable using 
the zeros function will allow the analysis to determine (should 
the parameters be evaluated to integer constant values) the 
shape of the array (i.e., number of dimensions of an array data 
type along with the respective sizes). In case of unknown com-
pile time values for the shape of declared matrices, the compi-
lation warns the user to define the shape by using an aspect file. 

The compiler relies on intra- and inter-procedural propaga-
tion of information (e.g., constants) to determine shapes and 
sizes. For instance, consider a MATLAB function which has N 
as one if its inputs, and a call to the function zeros(N, N). If the 
compiler determine that the function is called with the value N 
equal to 10, it can infer a 10×10 shape, and specialize the func-
tion to that input parameter. The compiler also infers shape 
information under the assumption that the original code would 
not result in a run-time execution error. For example, an ex-
pression with 1×1 shape cannot be divided by an array Z with 
more than one element, as it will result in a runtime error in the 
MATLAB execution environment. Therefore, if Z is not reas-

signed in the code then it has a 1×1 shape and can be safely 
represented by a single integer or floating-point element. 

To address the limitations of a static type/shape inference 
analyses and the usual cases where the user needs to force and 
evaluate data types not derived by type analysis, the compiler 
supports the specification of types and shapes of variables as 
LARA aspects. The overall goal of this mechanism is to com-
plement the capabilities of the type-inference and allow the 
compiler to generate code using more accurate type infor-
mation. However, future work is planned to include a more 
advanced kind analysis stage as the one presented in [10]. 

C. Code Generation 

The C code generation is performed directly from CIR, 
making use of a flexible data structure called tensor (see Fig. 
2). This structure has its dimensions and base type (integer, 
float and complex) dynamically allocated, thus relying on run-
time tests to determine which operation to apply to the ele-
ments of multi-dimensional arrays. The tensor is used to repre-
sent, in C, all variables that have more than one element. The 
tensor structure stores the shape, the size of each dimension, 
and the type of its elements. The number of elements of the 
whole matrix represented by a tensor is also stored for efficien-
cy. We also developed a C tensor library with all the structures 
and functions to support some of the most common MATLAB 
matrix built-in functions. 

typedef struct tensor_struct_d {  /*TENSOR data struct*/ 
 double* data; //array storing data 

 int numel; //total number of elements (e.g., 20×3 matrix ⇒ numel=60) 
 int* shape; //array storing number of elements in each dimension 
 int dims;     //total number of dimensions 
} tensor_d; 

Fig. 2. Tensor data structure for double precision floating-point data types. 

We now illustrate the application of the proposed approach 
to a MATLAB function implementing an FIR (Finite Impulse 
Response) filter as depicted in Fig. 3. This function takes as 
input an array named input and outputs an array named output. 
In the absence of any type information, our compiler would 
conservatively generate a C code that uses a tensor variable for 
the argument as well as for the function’s return value as de-
picted in Fig. 4(a).  

function output=fir(input, coefficients) 
 NTAPS = length(coefficients); 
 N = length(input); 
 for i = NTAPS:1:N 
  sum = 0.0; 
  for j = 0:1:NTAPS-1 
   sum = sum + input(i-j) * coefficients(j+1); 
  end 
  output(i) = sum; 
 end 
end 

Fig. 3. MATLAB fir code example. 

With the type and shape specification depicted in Fig. 5, the 
compiler directly uses this information to resolve the type and 
shape of the function arguments. This results in a very efficient 
and compact C code (depicted in Fig. 4(b)), in which the tensor 



data structure is no longer required. Besides the code of the 
function, MATISSE also generates main functions for testing 
purposes, by specifying an .M or .MAT file with the values of 
the input arguments of the function to test. 

 

#include "fir_double.h" 
#include "lib/array_creators_alloc.h" 

#include "lib/tensor.h" 
#include "lib/tensor_struct.h" 

 
tensor_d* fir( 
tensor_d* vector_1d, tensor_d* 
coefficients, tensor_d** output) { 
   int NTAPS; int N; int i; 
   double sum; int j; 
 
   NTAPS = length(coefficients); 
   N = length(vector_1d); 

   zeros_d2(1, N, &*output); 
   for(i=NTAPS; i<=N; i=i+1) { 
      sum = 0.0; 
      for(j=0; j<=(NTAPS-1); j=j+1)  { 
         sum = sum+ 
      (get_tensor_d_1(vector_1d, (i-j))* 
             get_tensor_d_1(coefficients,  
               (j+1))); 
      } 
      set_tensor_d_1(*output, i, sum); 
   } 
   return *output; 

} 

/** 
 * 'vector_1d' has shape [1][1024] 
 * 'coefficients' has shape [1][32] 
 * 'output' has shape [1][1024] 
 */ 
double* fir(double* vector_1d, 
double* coefficients, double* 
output) { 
   int NTAPS; int N; int i; 
   double sum; int j; 
 
   NTAPS = 32; 
   N = 1024; 

    
for(i = NTAPS; i<=N; i = i+1)  { 
      sum = 0.0; 
      for(j=0; j<=(NTAPS-1); j=j+1) { 
         sum = sum+ 
                    (vector_1d[(i-j)-1]* 
                    coefficients[(j+1)-1]); 
 
      } 
      output[i-1] = sum; 

   } 
   return output; 
} 

(a) (b) 

Fig. 4. C codes for the fir function generated by MATISSE: (a) for a generic 
case (no definition of data-types and shapes); (b) for a definition of data-types 
and shapes. Code in italic highlights the differences between the two codes. 

aspectdef firSingle 
 var typeDef = { 
  vector_1d: "single[1][1024]", 
  coefficients: "single[1][32]", 
  sum: "single" 
 }; 
 
 select function{name==”fir”}.var end 
 apply 
  def type = typeDef[$var.name]; 
 end 
 condition $var.name in typeDef end 
end 

Fig. 5. Possible LARA code to specify types and shapes for the fir function. 

 MATISSE uses linearization of multi-dimensional arrays, 
whereby an element of the multi-dimensional array is accessed 
through a single pointer variable. Linearization has several 
benefits. First, simple element-wise operations are compactly 
executed in a single loop rather than using a loop nested struc-
ture. Second, the single allocation of storage and corresponding 
boundary values also enables one out-of-bound condition 
check per array access rather than having to perform a verifica-
tion per array dimension. Lastly, it also provides other ad-
vantages regarding the size of code generated. When multi-
dimensional arrays are generated without linearization, code 
may need to consider various pointers (when dimensions are 

not known at compilation time) in order to allocate the space 
needed for all dimensions. 

Array linearization is an important transformation to reduce 
execution time when dealing with dynamic memory allocated 
data structures. Our previous experiences showed that focusing 
on the improvement of element-wise operations can have a 
significant performance impact of the generated C code, be-
cause applying the same operation (e.g., element-wise sum, 
subtraction, and multiplication) to each element of equally 
sized arrays is very common in MATLAB programs. 

III. EXPERIMENTS 

We carried out a series of experiments to evaluate the im-
pact of the type and shape information on the performance of 
the generated C code in combination with the array lineariza-
tion transformation, as this transformation proved to be very 
effective using shape and type knowledge. 

A. Methodology 

We use MATISSE to automatically derive a series of C 
codes corresponding to kernels written in MATLAB. We then 
compare the execution time after compiling the resulting code 
to the following three target architectures: 

- Xilinx MicroBlaze (MB) processor using a single preci-
sion floating-point unit, data and instruction cache, integer 
divider and optimized for speed. We use the gcc  and the 
reflectc compiler [5] and a MB cycle accurate simulator; 

- PowerPC 604 (PPC) processor using the gcc compiler and 
PSIM [11], a cycle-based simulator for this processor. 

- Application-specific architectures generated with the 
DWARV2.0 hardware compiler [12] integrated in the re-
flectc hardware/software compiler [5]. 

The experiments rely on the use of LARA-based data-type 
and shape specifications to generate C code with statically de-
clared arrays. In the absence of array shape information, the 
compiler uses dynamically allocated arrays (relying on a flexi-
ble data-structure named tensor). In addition, we have also 
carried out experiments where we use different precision re-
quirements (e.g., double and float). 

B. Benchmarks 

We conducted these experiments using the MATLAB codes 
briefly described in Table I. We include fsubband and gridIt, 
two critical functions from the 3D Path Planning and the 
MPEG audio encoder applications [4]. In addition, we include 
an application to perform correlation using FFTs and with 3D 
matrices as input. This application named cfd, uses forward and 
inverse 2D FFTs provided by a MATLAB function able to per-
form N-dimensional FFTs (identified as fft2D), and a dot prod-
uct between 3D matrices (identified as cpx). 

C. Results 

The experimental validation of the C code generated by 
MATISSE for all benchmarks in Table I showed results within 
a relative error of 1e10-4 when compared to the MATLAB re-
sults (with both codes using double precision data types). 



Fig. 6 shows a performance comparison of C code automat-
ically generated by MATISSE from MATLAB using single pre-
cision types, when compared with C manual versions devel-
oped by experienced programmers. The code was compiled 
with GCC compilers, with optimization level O2, and was 
evaluated using PPC and MB processor simulators. For these 
experiments, we consider that the shapes of matrices are known 
at compile time and thus matrices are implemented as statically 
declared arrays. We do not include comparisons for cpx and cfd 
examples as we do not have manual C code for those functions. 
Values greater than one for the ratios between execution times 
presented in Fig. 6 indicate performance improvements of 
MATISSE generated C code over manual C code. For the ex-
amples used, the performance of the C codes generated by 
MATISSE is very close to the performance of the C code de-
veloped manually, both for the PPC and for the MB processors 
(between 95-99% of the original performance). In some cases, 
the MATISSE-generated codes for the MB processor outper-
form the manually-derived C codes (see gridIt and fft2d). 

TABLE I.  DESCRIPTION SUMMARY OF THE MATLAB CODES USED. (1) 
NESTED LOOPS PERFORMING OPERATIONS WITH ARRAYS OF DOUBLES. 

Benchmark 

(name 

used) 

Description Base 

Types/ 

Shapes 

Used 

Code Structure 

- MATLAB 

#LoCs 

FIR (fir) 32-tap Finite Impulse 
Response filter 

1D array of 
doubles 

(1) - 27 lines 

filter_ 
subband 
(fsubband) 

Filter bank, key 
component in MPEG 
audio compression 

1D arrays 
of doubles 
 

(1) - 16 lines 

gridIterate 
(gridIt) 

Laplacian’s iteration 
function for a 3D Path 
Planning app. 

3D arrays 
of doubles 
(32×64×16) 

(1) - 38 lines 

fftRealImag 
(fft2D) 

Forward and inv. N-D 
FFT using complex 
values 

2D arrays 
of doubles 
complex 

(1) - 114 lines 

cpxdotprod 
(cpx) 

Dot product between 
two 3D matrices as 
input 

3D arrays 
of doubles 
complex 

(1) - 16 lines 

cfd Correlation in the 
Freq. Domain using 
3D matrices as input 

3D arrays 
of doubles 
complex 

2 calls to fft2D, 
1 call to cpx, 
and sum of 2 
L×2D matrices 
- 34 lines 

 

 

Fig. 6. Performance between code versions of the benchmarks when 
executed in PowerPC (PPC) and MicroBlaze (MB) processors. 

Fig. 6 also compares the execution times for the MB when 
using single and double precision floating point (MB single vs. 

double). As the MB only has hardware support for single preci-
sion floating point, double precision operations are emulated in 
software and have a significant impact when used (i.e., a slow-
down between 30× and 61×, in the tested cases). In these cases, 
it is very important to avoid unwanted uses of double precision 
data types when single precision code is the target. The follow-
ing are 3 situations avoided by MATISSE when targeting sin-
gle precision data types: (1) intermediate variables being in-
ferred as double precision data types; (2) use of double preci-
sion for constants instead of single precision (e.g., 2.0 vs. 
2.0f); (3) implicit casts of double to float due to the 
use/generation of functions with parameters of type double 
instead of float. When these issues are not addressed, we have 
measured slowdowns of up to an order of magnitude for single 
precision code. These issues are cumbersome and error-prone 
to correct when manually adapting double precision to single 
precision C code, and are well-suited for an automatic ap-
proach, such as the one proposed by the MATISSE compiler. 

Additional experiments using dynamically allocated arrays 
showed increases in performance between 1.04× (for fir) and 
2.04× (gridIt). Furthermore, dynamically allocated arrays are 
not supported by hardware compilers (including the most rep-
resentative academic/industrial high-level synthesis tools). This 
clearly shows the importance of the specialization provided by 
shape inference and user information. 

Fig. 7 shows the results obtained for the function fsubband 
considering the use of manual C code, and the C code obtained 
from the MATLAB code using MATISSE. The C codes were 
then compiled to the MB processor and to custom FPGA 
hardware using the reflectc compiler [4], which uses 
DWARV2.0 [12] as its hardware generator. We used three 
compiler strategies (identified as 0, 1, and 2) for each target. 
The results reveal the efficiency of the C code produced by 
MATISSE when considering a complete toolchain from 
MATLAB to microprocessor binaries and to hardware. The re-
sults even show important improvements over the use of man-
ual C code. Noticeable are the latencies’ improvements of 
36.1%, 29.5%, and 32.8% for SW 0 and HW 2 with single pre-
cision data types, and for HW 2 with double precision, respec-
tively. 

IV. RELATED WORK 

Given the importance of MATLAB there have been research 
efforts to improve the execution of JIT MATLAB compilers. A 
recent example is the compiler presented in [13] which per-
forms function specialization based on the runtime knowledge 
of the types of the arguments of the functions. Yet, a lack of a 
MATLAB runtime for most embedded systems has led to the 
development and research on how to best translate MATLAB 
programs into equivalent C code.  

DeRose and Padua developed the FALCON environment 
[14] that translates MATLAB to FORTRAN90 code. They lev-
erage an aggressive use of static and type inference for base 
types (doubles and complex) as well as shape (or rank) of the 
matrices. Other researchers have explored the reuse of storage 
for array variables across a MATLAB code thus reducing the 
memory footprint of the corresponding C reference code [15]. 
Joisha et al [16][17][18] focused on type and shape inference 
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techniques. Researchers have also relied on a mix of type infer-
ence approaches and user’s provided information. For instance, 
[19][20] use annotations to specify data types and shapes and 
simple type inference analysis and target VHDL code specifi-
cation for hardware synthesis onto FPGAs. We specifically 
note that our approach is focused on embedded implementa-
tions of the MATLAB programs. In this context, an efficient 
translation to an implementation language (mainly C) is need-
ed. One of the possibilities is to consider a subset of MATLAB 
allowing feasible and efficient static compilation. One example 
using such a subset is the embedded MATLAB (a subset of 
MATLAB) to C code translation existent in the MathWorks 
Real-Time Workshop [21], which allows the user to embed 
annotations with MATLAB code to achieve C code implemen-
tations for embedded systems [22]. 

 

Fig. 7. Results for function fsubband considering SW (MicroBlaze: MB) and 
HW implementations. The results show execution time improvements 
between manual C code and C code generated by MATISSE, and the use of 3 
compiler sequences (0, 1, and 2). 

The popularity of the MATLAB language is also reflected in 
the similar languages that have been proposed. Examples of 
those languages are Scilab [23] and Octave [24]. Recently, a 
Scilab to C translator [25], named Sci2C, has been developed. 
The Sci2C translator focus entirely on embedded systems, and 
is completely dependent on annotations embedded in the Scilab 
code to specify data sizes and precisions. Our compiler distin-
guishes from Sci2C as it is able to generate C code even with-
out annotations and specialization of the generated C code can 
be achieved without polluting the original code (MATLAB, in 
our case). Furthermore, Sci2C requires that the size of arrays is 
fixed and statically known while our compiler also produces C 
code (including calls to realloc) when those sizes are unknown. 

The use of user-specified rules and strategies for code 
transformations has been focused by various authors. As with 
the compiler to optimize Octave programs presented in [26], 
our compiler relies on a strategic programming approach. They 
present an approach, based on Stratego/XT [27], in the context 
of code specialization for Octave [24] programs. They consider 
loop vectorization and partial evaluation of types and values. In 
our approach we extend the strategic programming approach 
with an AOP approach provided by LARA. 

In this work we described a mechanism for conveying in-
formation about types and shape/rank similar in spirit with the 
notion of Aspects [4]. Previous work has proposed aspect-
oriented extensions to MATLAB [28] and an aspect-oriented 
code transformation language for MATLAB [29]. Other authors 

have explored aspect-oriented approaches for MATLAB [30], 
but do not use aspects to specify complementary information 
that can be used by compilers to produce more efficient im-
plementations. For our compilation infrastructure we used a 
strategic programming approach, based on TOM, and we fo-
cused on C code generation, especially for embedded compu-
ting systems, along with the aggressive use of the linearization 
and tensor internal representation to deal with unknown 
shape/rank dimensions. 

Some of the benefits of using aspect-oriented extensions to 
MATLAB have been already exposed by a number of software 
metrics [31]. However, the inclusion of the versatility of 
LARA [4][5] on providing strategies for MATLAB tools adds 
further suitable dimensions to the use of AOP approaches in 
the context of the MATLAB programming language. 

V. CONCLUSION 

This paper presented MATISSE, a compiler infrastructure 
for MATLAB. MATISSE relies on LARA aspects for specify-
ing data types, shapes, and code instrumentation and speciali-
zation. The MATISSE approach not only assists in the early 
code development phases but the implementation phases as 
well, by providing data type and shape information for the sub-
sequent code generation steps. When coupled to the reflectc [5] 
compiler, MATISSE provides a complete toolchain able to 
generate code for both software and hardware components. The 
experimental results presented here reveal the described ap-
proach to yield performance results for the resulting software 
references implementations that are comparable in terms of 
performance with hand-crafted solutions. 
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