
The MATISSE MATLAB Compiler*
A MATrix(MATLAB)-aware compiler InfraStructure for embedded computing SystEms

João Bispo1, Pedro Pinto1, Ricardo Nobre1,2, Tiago Carvalho1,2, João M. P. Cardoso1,2
1 Faculty of Engineering (FEUP), University of Porto, Porto, Portugal
{jbispo, pmsp, ricardo.nobre, tiago.diogo.carvalho, jmpc}@fe.up.pt

2 INESC-TEC, Porto, Portugal

Pedro C. Diniz3
3 INESC-ID Lisboa, Portugal

pedro@esda.inesc-id.pt

Abstract— This paper describes MATISSE, a MATLAB to C

compiler targeting embedded systems that is based on Strategic

and Aspect-Oriented Programming concepts. MATISSE takes as

input: (1) MATLAB code and (2) LARA aspects related to types

and shapes, code insertion/removal, and specialization based

directives defining default variable values. In this paper we also

illustrate the use of MATISSE in leveraging data types and

shapes to generate customized C code suitable for high-level

hardware synthesis tools. The preliminary experimental results

presented here reveal the described approach to yield perfor-

mance results for the resulting hardware and software references

implementations that are comparable in terms of performance

with hand-crafted solutions but derived automatically at a frac-

tion of the cost.

Keywords— MATLAB, Source-to-Source Compilers, Aspect-

Oriented Programming, LARA, Embedded Systems

I. INTRODUCTION

MATLAB [1] is a de facto standard high-level programming
language and interactive numerical computing environment in
many domains in engineering and science, including embedded
computing as it is ubiquitously used by engineers to quickly
develop and evaluate their solutions. The flexibility of
MATLAB, however, relies on runtime interpretation (and JIT
compilation) as the language lacks type/shape information, in
particular when manipulating arrays. Due to advances in JIT
compilation and the use of pre-compiled libraries for the most
processor-intensive functions, the MATLAB runtime currently
exhibits acceptable performance. In many embedded system
settings, however, the use of a MATLAB runtime is infeasible,
due to performance and/or resource constraints. To address this
potential shortcoming, a typical solution relies on the develop-
ment of an auxiliary reference implementation in executable
code derived from imperative languages such as C/C++ once
the base or original MATLAB code has been validated. This
reference, C/C++ code, must then in turn be validated against
the output of the MATLAB code resulting on a lengthy and er-
ror prone process that further complicates the overall applica-
tion development cycle and cost. The existence of two code
specifications (the original prototypical MATLAB code and the
reference C/C++ code) also exacerbates maintenance costs.

An alternative approach relies on a compilation tool to per-
form advanced analyses and generate a reference C/C++ code
directly from MATLAB thus greatly reducing the lengthy user
intervention. In our approach, we explore the use Aspect-
Oriented Programming (AOP) [2][3] concepts, using the
LARA language [4][5] as a vehicle to convey information to

the compiler regarding types and array variable shapes. The
compiler uses the user-provided information complementing
and checking its consistency against the information it can de-
rive from its own analyses.

As to the compiler infrastructure, we rely on the concept of
strategic programming [6] to develop a modular and flexible
compiler framework. The infrastructure uses TOM [7], a lan-
guage extension designed to manipulate tree structures, to at-
tain a built-in rewriting system for analyses and transfor-
mations. The end result is a synergy between compiler analysis
and the user that allows the compiler to generate very high
code quality from MATLAB specifications and the possibility to
generate different C code versions, a key capability when tar-
geting different embedded systems. In addition, the use of a
well-known mature strategic programming system such as
TOM allows our compiler infrastructure to be easily extended
in comparison to other approaches using proprietary data-
structures and implementations.

Even when a MATLAB compiler integrates sophisticated
type and shape inference mechanisms, there is often the need to
enforce additional characteristics or features. A common case
is the multitude of target embedded architectures that need to
be considered, hampering the compiler on generating efficient
codes without user’s intervention. In addition in some cases
developers need to explore the possible solutions and to use
specific data types according to accuracy requirements in the
desired solution.

This paper mainly focuses on the following aspects of the
MATISSE [8] compiler:

- It describes the overall architecture of the MATISSE com-
piler. This compiler is developed in Java exhibiting an ex-
tremely modular software architecture that can be easily
augmented with specific transformations and code genera-
tion steps, thus facilitating compiler development.

- It describes the use of LARA to complement the compiler
analyses for types and shapes of array variables in MATLAB
programs.

- It presents experimental results of the use of the compiler to
generate C code from MATLAB examples, guided by
LARA specifications with different arithmetic precision
contexts and specific array shapes, and targeting both soft-
ware and hardware implementations (via VHDL code de-
scriptions).

We also describe the aggressive application of array linear-
ization for code generation, an important low-level code gener-
ation optimization. The performance results are very promising
as the generated C codes are very competitive with the hand-
crafted codes. The experiments described here are also clear
evidence of the efficiency and effectiveness of our approach
when generating different code versions from the same input
MATLAB code, which is needed when exploring and re-
targeting different architectures.

This paper is organized as follows. Section II presents the
MATISSE framework and describes its architecture with par-
ticular emphasis on its code generation process. Section III
presents experimental results. Section IV presents the related
work and finally, Section V concludes the paper.

II. MATISSE

MATISSE is a MATLAB compiler framework leveraging
user knowledge and translation constraints. Currently it sup-
ports a subset of MATLAB as its input, and generates MATLAB
and C code (see Fig. 1). It uses LARA aspects to guide the ap-
plication of source-to-source transformations in its internal
high-level code representation, as well as variable type and
shape definitions when generating C code from its intermediate
representation. MATISSE relies on an automated process
called weaving, which combines application code sources and
LARA aspects to derive an augmented application at compile-
time that satisfies specific concerns described in aspects.

Fig. 1. The MATISSE compiler framework.

MATISSE receives as input: (1) MATLAB code and (2)
LARA aspects related to types and shapes, code inser-
tion/removal, and specialization directives. It generates C code
that can be used by third-party design-flows targeting soft-
ware/hardware systems. For the purpose of testing, monitoring,
and specialization, MATISSE also generates MATLAB code.

The knowledge regarding data types and shapes, provided
by LARA aspects, allows MATISSE to generate both more
efficient C code and stylized C code that conforms to the input
requirements of specific tools of a given toolchain. A common

example includes the restructuring of source code and the use
of statically declared array variables to be compliant with the
requirements of high-level synthesis tools (e.g., Catapult C).

MATISSE can be used as a source-to-source code trans-
formation and instrumentation tool allowing developers to
quickly and reliably generate reference C implementations, a
key step in the deployment of embedded system designs. The
transformation stage of the compiler performs weaving actions
such as insertion of code, definitions of types and shapes, and
code specialization based on default values.

A. Compiler Architecture

The input to the MATISSE compiler is a set of MATLAB
files and LARA aspects. The MATLAB files are parsed and
represented as a tree-based intermediate representation
(MATLAB-IR or MIR). This MIR is then input to a LARA
Weaver (ir2ir stage). This weaver is based on strategic pro-
gramming techniques for performing transformations, inser-
tion/removal of code, as well as code specialization based on
LARA aspects. Integrated in the ir2ir stage are components
responsible for the translation of the MIR to a TOM [7] com-
patible IR (named TIR) enabling the use of TOM and its pow-
erful mechanisms to program tree-transformation strategies. As
part of the ir2ir, we developed a flexible mechanism to define
the semantic rules to be used in type conversions when dealing
with arithmetic expressions, of particular importance in the
presence of specialized fixed-point representations.

The entire MATISSE infrastructure allows ir2ir to deal
with a weaving process controlled by LARA. This infrastruc-
ture uses an interpreter to process LARA aspects and strategies
controlling the weaving at the TIR level. TIR represents the
input MATLAB code as expression trees directly obtained by
the AST produced by the MATISSE front-end. The transfor-
mations in ir2ir use TOM capabilities to manipulate tree struc-
tures. Pattern matching is used to find specific patterns of data-
structures in the TIR where transformations are applied. The
use of TOM allows us to achieve a flexible compiler infrastruc-
ture as transformations rules are described using TOM specifi-
cations and thus extensively use strategic programming tech-
niques [6]. By using the advanced capability of TOM regarding
rewriting rules and strategies, a compiler infrastructure is able
to accommodate easily new transformations as required, main-
taining, we believe, a systematic, non-intrusive, approach.

The C code generator (ir2c) component of the MATISSE
compiler allows us to generate ANSI-C reference codes from
MIR representations. According to the complementary infor-
mation and/or code inserted for monitoring, this C code genera-
tor phase may produce different code versions for the same
MATLAB input program. These code versions reflect different
implementations, bearing in mind the target architecture. The
current version of ir2c supports most MATLAB operators over
scalars, but includes restrictions when dealing with matrices.
At the core of the ir2c back-end is a translation of MIR repre-
sentations to an intermediate representation (named CIR) more
suitable for generating C code. Although the CIR strictly repre-
sents C, it is augmented to help the MATLAB conversion, for
example, by providing (several implementations of) matrix as
one of its base types. CIR is also used as a bridge for MATLAB
to C transformations.

MATLAB to IR

(matlab2ir)

Weaver

(ir2ir)

MIR

IR to MATLAB

(ir2matlab)

MATLAB Code LARA Aspects

MATLAB Code

MATISSE

IR to C

(ir2c)

C Code

Type/Shape Assignments

MIR

Source MATLAB code generation (ir2matlab back-end) is
straightforward from the MIR representation, possibly extend-
ed/transformed by compiler analysis and/or by the weaving
process, which already represents MATLAB input code. The
code generated by ir2matlab provides the user with the possi-
bility to compare and validate results between the original and
transformed variants of the input MATLAB code.

B. Type and Shape Inference Analyses

MATLAB is a weakly typed language whose types are im-
plicitly converted. It is also a dynamically typed language,
whose variables can be assigned without type declaration, and
their types can even change at runtime. This is in stark contrast
with C, which has static typing and needs the types of all varia-
bles to be declared. Additionally, in C, variables can have only
one type during their entire lifetime.

When converting MATLAB source code to C, it is necessary
to statically determine the types used by each function and by
the variables manipulated. This can be a challenge, as the same
MATLAB function can have very different C implementations,
depending on the types of its variables. Fortunately, defining
the types of the arguments of a MATLAB function is often
enough to infer the remaining types of variables the function
manipulates. Still, when using statically declared arrays (as
opposed to dynamically allocated arrays) it is also necessary to
determine the shape of the arrays at compile time.

The data-flow type inference analysis uses a simple data-
flow analysis approach [9] where type information is derived
by processing each MATLAB statement, complemented with
information provided by “aspect files”, which can define the
type and shape of any variable. In most cases, minimal type
and shape definitions are needed as a data-flow analysis allows
the compiler to propagate types and shapes from the main func-
tion to the invoked functions. Types can be set by explicitly
indicating the type in an aspect file, or by the use of pre-
defined allocation functions (e.g., zeros, ones, eye) and assign-
ment statements. This information is then propagated along
control-flow edges of each of the variable’s use and in many
cases updated and extended by information determined in other
assignments (e.g., information about what value the variable
might contain). For instance, an allocation of a variable using
the zeros function will allow the analysis to determine (should
the parameters be evaluated to integer constant values) the
shape of the array (i.e., number of dimensions of an array data
type along with the respective sizes). In case of unknown com-
pile time values for the shape of declared matrices, the compi-
lation warns the user to define the shape by using an aspect file.

The compiler relies on intra- and inter-procedural propaga-
tion of information (e.g., constants) to determine shapes and
sizes. For instance, consider a MATLAB function which has N
as one if its inputs, and a call to the function zeros(N, N). If the
compiler determine that the function is called with the value N
equal to 10, it can infer a 10×10 shape, and specialize the func-
tion to that input parameter. The compiler also infers shape
information under the assumption that the original code would
not result in a run-time execution error. For example, an ex-
pression with 1×1 shape cannot be divided by an array Z with
more than one element, as it will result in a runtime error in the
MATLAB execution environment. Therefore, if Z is not reas-

signed in the code then it has a 1×1 shape and can be safely
represented by a single integer or floating-point element.

To address the limitations of a static type/shape inference
analyses and the usual cases where the user needs to force and
evaluate data types not derived by type analysis, the compiler
supports the specification of types and shapes of variables as
LARA aspects. The overall goal of this mechanism is to com-
plement the capabilities of the type-inference and allow the
compiler to generate code using more accurate type infor-
mation. However, future work is planned to include a more
advanced kind analysis stage as the one presented in [10].

C. Code Generation

The C code generation is performed directly from CIR,
making use of a flexible data structure called tensor (see Fig.
2). This structure has its dimensions and base type (integer,
float and complex) dynamically allocated, thus relying on run-
time tests to determine which operation to apply to the ele-
ments of multi-dimensional arrays. The tensor is used to repre-
sent, in C, all variables that have more than one element. The
tensor structure stores the shape, the size of each dimension,
and the type of its elements. The number of elements of the
whole matrix represented by a tensor is also stored for efficien-
cy. We also developed a C tensor library with all the structures
and functions to support some of the most common MATLAB
matrix built-in functions.

typedef struct tensor_struct_d { /*TENSOR data struct*/
 double* data; //array storing data

 int numel; //total number of elements (e.g., 20×3 matrix ⇒ numel=60)
 int* shape; //array storing number of elements in each dimension
 int dims; //total number of dimensions
} tensor_d;

Fig. 2. Tensor data structure for double precision floating-point data types.

We now illustrate the application of the proposed approach
to a MATLAB function implementing an FIR (Finite Impulse
Response) filter as depicted in Fig. 3. This function takes as
input an array named input and outputs an array named output.
In the absence of any type information, our compiler would
conservatively generate a C code that uses a tensor variable for
the argument as well as for the function’s return value as de-
picted in Fig. 4(a).

function output=fir(input, coefficients)
 NTAPS = length(coefficients);
 N = length(input);
 for i = NTAPS:1:N
 sum = 0.0;
 for j = 0:1:NTAPS-1
 sum = sum + input(i-j) * coefficients(j+1);
 end
 output(i) = sum;
 end
end

Fig. 3. MATLAB fir code example.

With the type and shape specification depicted in Fig. 5, the
compiler directly uses this information to resolve the type and
shape of the function arguments. This results in a very efficient
and compact C code (depicted in Fig. 4(b)), in which the tensor

data structure is no longer required. Besides the code of the
function, MATISSE also generates main functions for testing
purposes, by specifying an .M or .MAT file with the values of
the input arguments of the function to test.

#include "fir_double.h"
#include "lib/array_creators_alloc.h"

#include "lib/tensor.h"
#include "lib/tensor_struct.h"

tensor_d* fir(
tensor_d* vector_1d, tensor_d*
coefficients, tensor_d** output) {
 int NTAPS; int N; int i;
 double sum; int j;

 NTAPS = length(coefficients);
 N = length(vector_1d);

 zeros_d2(1, N, &*output);
 for(i=NTAPS; i<=N; i=i+1) {
 sum = 0.0;
 for(j=0; j<=(NTAPS-1); j=j+1) {
 sum = sum+
 (get_tensor_d_1(vector_1d, (i-j))*
 get_tensor_d_1(coefficients,
 (j+1)));
 }
 set_tensor_d_1(*output, i, sum);
 }
 return *output;

}

/**
 * 'vector_1d' has shape [1][1024]
 * 'coefficients' has shape [1][32]
 * 'output' has shape [1][1024]
 */
double* fir(double* vector_1d,
double* coefficients, double*
output) {
 int NTAPS; int N; int i;
 double sum; int j;

 NTAPS = 32;
 N = 1024;

for(i = NTAPS; i<=N; i = i+1) {
 sum = 0.0;
 for(j=0; j<=(NTAPS-1); j=j+1) {
 sum = sum+
 (vector_1d[(i-j)-1]*
 coefficients[(j+1)-1]);

 }
 output[i-1] = sum;

 }
 return output;
}

(a) (b)

Fig. 4. C codes for the fir function generated by MATISSE: (a) for a generic
case (no definition of data-types and shapes); (b) for a definition of data-types
and shapes. Code in italic highlights the differences between the two codes.

aspectdef firSingle
 var typeDef = {
 vector_1d: "single[1][1024]",
 coefficients: "single[1][32]",
 sum: "single"
 };

 select function{name==”fir”}.var end
 apply
 def type = typeDef[$var.name];
 end
 condition $var.name in typeDef end
end

Fig. 5. Possible LARA code to specify types and shapes for the fir function.

 MATISSE uses linearization of multi-dimensional arrays,
whereby an element of the multi-dimensional array is accessed
through a single pointer variable. Linearization has several
benefits. First, simple element-wise operations are compactly
executed in a single loop rather than using a loop nested struc-
ture. Second, the single allocation of storage and corresponding
boundary values also enables one out-of-bound condition
check per array access rather than having to perform a verifica-
tion per array dimension. Lastly, it also provides other ad-
vantages regarding the size of code generated. When multi-
dimensional arrays are generated without linearization, code
may need to consider various pointers (when dimensions are

not known at compilation time) in order to allocate the space
needed for all dimensions.

Array linearization is an important transformation to reduce
execution time when dealing with dynamic memory allocated
data structures. Our previous experiences showed that focusing
on the improvement of element-wise operations can have a
significant performance impact of the generated C code, be-
cause applying the same operation (e.g., element-wise sum,
subtraction, and multiplication) to each element of equally
sized arrays is very common in MATLAB programs.

III. EXPERIMENTS

We carried out a series of experiments to evaluate the im-
pact of the type and shape information on the performance of
the generated C code in combination with the array lineariza-
tion transformation, as this transformation proved to be very
effective using shape and type knowledge.

A. Methodology

We use MATISSE to automatically derive a series of C
codes corresponding to kernels written in MATLAB. We then
compare the execution time after compiling the resulting code
to the following three target architectures:

- Xilinx MicroBlaze (MB) processor using a single preci-
sion floating-point unit, data and instruction cache, integer
divider and optimized for speed. We use the gcc and the
reflectc compiler [5] and a MB cycle accurate simulator;

- PowerPC 604 (PPC) processor using the gcc compiler and
PSIM [11], a cycle-based simulator for this processor.

- Application-specific architectures generated with the
DWARV2.0 hardware compiler [12] integrated in the re-
flectc hardware/software compiler [5].

The experiments rely on the use of LARA-based data-type
and shape specifications to generate C code with statically de-
clared arrays. In the absence of array shape information, the
compiler uses dynamically allocated arrays (relying on a flexi-
ble data-structure named tensor). In addition, we have also
carried out experiments where we use different precision re-
quirements (e.g., double and float).

B. Benchmarks

We conducted these experiments using the MATLAB codes
briefly described in Table I. We include fsubband and gridIt,
two critical functions from the 3D Path Planning and the
MPEG audio encoder applications [4]. In addition, we include
an application to perform correlation using FFTs and with 3D
matrices as input. This application named cfd, uses forward and
inverse 2D FFTs provided by a MATLAB function able to per-
form N-dimensional FFTs (identified as fft2D), and a dot prod-
uct between 3D matrices (identified as cpx).

C. Results

The experimental validation of the C code generated by
MATISSE for all benchmarks in Table I showed results within
a relative error of 1e10-4 when compared to the MATLAB re-
sults (with both codes using double precision data types).

Fig. 6 shows a performance comparison of C code automat-
ically generated by MATISSE from MATLAB using single pre-
cision types, when compared with C manual versions devel-
oped by experienced programmers. The code was compiled
with GCC compilers, with optimization level O2, and was
evaluated using PPC and MB processor simulators. For these
experiments, we consider that the shapes of matrices are known
at compile time and thus matrices are implemented as statically
declared arrays. We do not include comparisons for cpx and cfd
examples as we do not have manual C code for those functions.
Values greater than one for the ratios between execution times
presented in Fig. 6 indicate performance improvements of
MATISSE generated C code over manual C code. For the ex-
amples used, the performance of the C codes generated by
MATISSE is very close to the performance of the C code de-
veloped manually, both for the PPC and for the MB processors
(between 95-99% of the original performance). In some cases,
the MATISSE-generated codes for the MB processor outper-
form the manually-derived C codes (see gridIt and fft2d).

TABLE I. DESCRIPTION SUMMARY OF THE MATLAB CODES USED. (1)
NESTED LOOPS PERFORMING OPERATIONS WITH ARRAYS OF DOUBLES.

Benchmark

(name

used)

Description Base

Types/

Shapes

Used

Code Structure

- MATLAB

#LoCs

FIR (fir) 32-tap Finite Impulse
Response filter

1D array of
doubles

(1) - 27 lines

filter_
subband
(fsubband)

Filter bank, key
component in MPEG
audio compression

1D arrays
of doubles

(1) - 16 lines

gridIterate
(gridIt)

Laplacian’s iteration
function for a 3D Path
Planning app.

3D arrays
of doubles
(32×64×16)

(1) - 38 lines

fftRealImag
(fft2D)

Forward and inv. N-D
FFT using complex
values

2D arrays
of doubles
complex

(1) - 114 lines

cpxdotprod
(cpx)

Dot product between
two 3D matrices as
input

3D arrays
of doubles
complex

(1) - 16 lines

cfd Correlation in the
Freq. Domain using
3D matrices as input

3D arrays
of doubles
complex

2 calls to fft2D,
1 call to cpx,
and sum of 2
L×2D matrices
- 34 lines

Fig. 6. Performance between code versions of the benchmarks when
executed in PowerPC (PPC) and MicroBlaze (MB) processors.

Fig. 6 also compares the execution times for the MB when
using single and double precision floating point (MB single vs.

double). As the MB only has hardware support for single preci-
sion floating point, double precision operations are emulated in
software and have a significant impact when used (i.e., a slow-
down between 30× and 61×, in the tested cases). In these cases,
it is very important to avoid unwanted uses of double precision
data types when single precision code is the target. The follow-
ing are 3 situations avoided by MATISSE when targeting sin-
gle precision data types: (1) intermediate variables being in-
ferred as double precision data types; (2) use of double preci-
sion for constants instead of single precision (e.g., 2.0 vs.
2.0f); (3) implicit casts of double to float due to the
use/generation of functions with parameters of type double
instead of float. When these issues are not addressed, we have
measured slowdowns of up to an order of magnitude for single
precision code. These issues are cumbersome and error-prone
to correct when manually adapting double precision to single
precision C code, and are well-suited for an automatic ap-
proach, such as the one proposed by the MATISSE compiler.

Additional experiments using dynamically allocated arrays
showed increases in performance between 1.04× (for fir) and
2.04× (gridIt). Furthermore, dynamically allocated arrays are
not supported by hardware compilers (including the most rep-
resentative academic/industrial high-level synthesis tools). This
clearly shows the importance of the specialization provided by
shape inference and user information.

Fig. 7 shows the results obtained for the function fsubband
considering the use of manual C code, and the C code obtained
from the MATLAB code using MATISSE. The C codes were
then compiled to the MB processor and to custom FPGA
hardware using the reflectc compiler [4], which uses
DWARV2.0 [12] as its hardware generator. We used three
compiler strategies (identified as 0, 1, and 2) for each target.
The results reveal the efficiency of the C code produced by
MATISSE when considering a complete toolchain from
MATLAB to microprocessor binaries and to hardware. The re-
sults even show important improvements over the use of man-
ual C code. Noticeable are the latencies’ improvements of
36.1%, 29.5%, and 32.8% for SW 0 and HW 2 with single pre-
cision data types, and for HW 2 with double precision, respec-
tively.

IV. RELATED WORK

Given the importance of MATLAB there have been research
efforts to improve the execution of JIT MATLAB compilers. A
recent example is the compiler presented in [13] which per-
forms function specialization based on the runtime knowledge
of the types of the arguments of the functions. Yet, a lack of a
MATLAB runtime for most embedded systems has led to the
development and research on how to best translate MATLAB
programs into equivalent C code.

DeRose and Padua developed the FALCON environment
[14] that translates MATLAB to FORTRAN90 code. They lev-
erage an aggressive use of static and type inference for base
types (doubles and complex) as well as shape (or rank) of the
matrices. Other researchers have explored the reuse of storage
for array variables across a MATLAB code thus reducing the
memory footprint of the corresponding C reference code [15].
Joisha et al [16][17][18] focused on type and shape inference

0.95

0.99 0.98
0.97

1.16

1.11

1.07

1.32

25.92

63.76

57.20

34.61

51.14

34.97

24

29

34

39

44

49

54

59

64

0.9

1.0

1.1

1.2

1.3

gridIt fir fsubband fft2D cpx cfd

E
xe

cu
ti

o
n

 t
im

e
 r

a
ti

o

(d
o

u
b

le
 /

 s
in

g
le

)

E
xe

cu
ti

o
n

 t
im

e
 r

a
ti

o

(m
a

n
u

a
l

/
M

A
T

IS
S

E
)

PPC-O2

MB-O2

MB double / single

techniques. Researchers have also relied on a mix of type infer-
ence approaches and user’s provided information. For instance,
[19][20] use annotations to specify data types and shapes and
simple type inference analysis and target VHDL code specifi-
cation for hardware synthesis onto FPGAs. We specifically
note that our approach is focused on embedded implementa-
tions of the MATLAB programs. In this context, an efficient
translation to an implementation language (mainly C) is need-
ed. One of the possibilities is to consider a subset of MATLAB
allowing feasible and efficient static compilation. One example
using such a subset is the embedded MATLAB (a subset of
MATLAB) to C code translation existent in the MathWorks
Real-Time Workshop [21], which allows the user to embed
annotations with MATLAB code to achieve C code implemen-
tations for embedded systems [22].

Fig. 7. Results for function fsubband considering SW (MicroBlaze: MB) and
HW implementations. The results show execution time improvements
between manual C code and C code generated by MATISSE, and the use of 3
compiler sequences (0, 1, and 2).

The popularity of the MATLAB language is also reflected in
the similar languages that have been proposed. Examples of
those languages are Scilab [23] and Octave [24]. Recently, a
Scilab to C translator [25], named Sci2C, has been developed.
The Sci2C translator focus entirely on embedded systems, and
is completely dependent on annotations embedded in the Scilab
code to specify data sizes and precisions. Our compiler distin-
guishes from Sci2C as it is able to generate C code even with-
out annotations and specialization of the generated C code can
be achieved without polluting the original code (MATLAB, in
our case). Furthermore, Sci2C requires that the size of arrays is
fixed and statically known while our compiler also produces C
code (including calls to realloc) when those sizes are unknown.

The use of user-specified rules and strategies for code
transformations has been focused by various authors. As with
the compiler to optimize Octave programs presented in [26],
our compiler relies on a strategic programming approach. They
present an approach, based on Stratego/XT [27], in the context
of code specialization for Octave [24] programs. They consider
loop vectorization and partial evaluation of types and values. In
our approach we extend the strategic programming approach
with an AOP approach provided by LARA.

In this work we described a mechanism for conveying in-
formation about types and shape/rank similar in spirit with the
notion of Aspects [4]. Previous work has proposed aspect-
oriented extensions to MATLAB [28] and an aspect-oriented
code transformation language for MATLAB [29]. Other authors

have explored aspect-oriented approaches for MATLAB [30],
but do not use aspects to specify complementary information
that can be used by compilers to produce more efficient im-
plementations. For our compilation infrastructure we used a
strategic programming approach, based on TOM, and we fo-
cused on C code generation, especially for embedded compu-
ting systems, along with the aggressive use of the linearization
and tensor internal representation to deal with unknown
shape/rank dimensions.

Some of the benefits of using aspect-oriented extensions to
MATLAB have been already exposed by a number of software
metrics [31]. However, the inclusion of the versatility of
LARA [4][5] on providing strategies for MATLAB tools adds
further suitable dimensions to the use of AOP approaches in
the context of the MATLAB programming language.

V. CONCLUSION

This paper presented MATISSE, a compiler infrastructure
for MATLAB. MATISSE relies on LARA aspects for specify-
ing data types, shapes, and code instrumentation and speciali-
zation. The MATISSE approach not only assists in the early
code development phases but the implementation phases as
well, by providing data type and shape information for the sub-
sequent code generation steps. When coupled to the reflectc [5]
compiler, MATISSE provides a complete toolchain able to
generate code for both software and hardware components. The
experimental results presented here reveal the described ap-
proach to yield performance results for the resulting software
references implementations that are comparable in terms of
performance with hand-crafted solutions.

ACKNOWLEDGMENT

This work was partially funded by the European Comis-
sion’s Framework Programme 7 (FP7) under contract No.
248976 (REFLECT project) and by FEDER/ON2 and FCT
project NORTE-07-124-FEDER-000062. The authors are also
grateful to the FCT support provided through grant
PTDC/EIA/70271/2006.

REFERENCES

[1] MATLAB – the Language of Technical Computing,
http://www.mathworks.com/products/matlab

[2] G. Kiczales, “Aspect-oriented programming,” ACM Computing Surveys
(CSUR). Volume 28, Issue 4es (Dec. 1996), 154.

[3] J.D. Gradecki, and N. Lesiecki, Mastering AspectJ: Aspect-Oriented
Programming in Java, John Wiley & Sons, Inc., NY, USA, 2003.

[4] J.M.P. Cardoso, et al., “LARA: An Aspect-Oriented Programming
Language for Embedded Systems,” in Proc. Int. Conf. on Aspect-
Oriented Software Development (AOSD’12), Potsdam, Germany, March
25-30, 2012, pp. 179-190.

[5] J.M.P. Cardoso, Pedro Diniz, José Gabriel Coutinho, and Zlatko Petrov
(eds.), Compilation and Synthesis for Embedded Reconfigurable
Systems, Springer, May 2013.

[6] R. Lämmel, E. Visser, and J. Visser, “Strategic programming meets
adaptive program-ming,” in Proc. 2nd Int. Conf. on Aspect-Oriented
Software Development (AOSD'03), Boston, Mass., March 17-21, 2003.
ACM, New York, NY, USA, pp. 168-177.

[7] J.-C. Bach et al., TOM Manual, Version 2.7, May, 2009
(http://tom.loria.fr)

[8] MATISSE, http://specs.fe.up.pt/tools/matisse/

[9] A. Aho, J. Ullman, M. Lam and R. Sethi, Compilers: Principles,
Techniques and Tools, Addison Wesley, 2006.

1.36

1.02
0.99 1.00

1.04

1.001.00
1.02

1.06
1.09

1.30
1.33

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

single double

Manual / MATISSE

SW 0

SW 1

SW 2

HW 0

HW 1

HW 2

[10] J. Doherty, L. Hendren, and S. Radpour, “Kind analysis for MATLAB,”
in Proc. ACM Int. Conf. on Object Oriented Programming Systems
Languages and Applications (OOPSLA'11). New York, pp. 99-118.

[11] A. Cagney, “PSIM - Model of the PowerPC Architecture,” March 2012.
http://sources.redhat.com/psim/

[12] R. Nane, et al., “DWARV 2.0: A CoSy-based C-to-VHDL hardware
compiler,” in Proc. 22nd Int. Conference on Field Programmable Logic
and Applications (FPL’12), Oslo, Norway, 29-31 Aug. 2012, pp. 619-
622.

[13] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge, “Optimizing
MATLAB through Just-In-Time Specialization,” in Int. Conf. on
Compiler Construction (CC’10), March 2010, pp. 46–65.

[14] L. De Rose, and D. Padua, “Techniques for the Translation of MATLAB
programs into Fortran 90,” in ACM Trans. Program. Lang. Syst., 21, 2
(Mar. 1999), pp. 286–23.

[15] P. Joisha, and P. Banerjee, “Static array storage optimization in
MATLAB”, in Proc. ACM Conf. on Programming Language Design
and Implementation (PLDI’03), June 09-11, 2003, San Diego, CA, USA.

[16] P. Joisha, and P. Banerjee “Correctly detecting intrinsic type errors in
typeless languages such as MATLAB,” in Proc. ACM Conf. on Array
Processing Languages (APL’01), June 2001, ACM, New York, NY,
USA, pp. 7–21.

[17] P. Joisha, and P. Banerjee, “The MAGICA type inference engine for
MATLAB,” Proc. 12th Int. Conf. on Compiler Construction, April 2003
(LNCS, vol. 2622). Springer, Berlin, 2003, pp. 121–125.

[18] P. Joisha, P. Banerjee, “An algebraic array shape inference system for
MATLAB,” in ACM Transactions on Programming Languages and
Systems, 2006; 28(5), pp. 848–907.

[19] A. Navak, M. Haldar, A. Choudhary, and P. Banerjee, “Parallelization of
MATLAB Applications for a Multi-FPGA System”, in Proc. 9th IEEE
Symp. on Field-Programmable Custom Computing Machines
(FCCM'01), Rohnert Park, CA, USA, May, 2001, pp. 1-9.

[20] P. Banerjee, at al., “Automatic Conversion of Floating Point MATLAB
Programs”, in Proc. 11th IEEE Symp. on Field-Programmable Custom
Computing Machines (FCCM’03), Napa, CA, USA, 2003.

[21] Real-Time Workshop: Generate C code from Simulink models and
MATLAB code, http://www.mathworks.com/products/rtw/

[22] H. Zarrinkoub, and G. Martin, “Best Practices for a MATLAB to C
Workflow Using Real-Time Workshop,” MATLAB Digest - Nov. 2009.

[23] Scilab, http://www.scilab.org/
[24] The Octave Home Page. http://www.gnu.org/software/octave/
[25] Scilab 2 C - Translate Scilab code into C code,

http://forge.scilab.org/index.php/p/scilab2c/
[26] K. Olmos, and E. Visser, “Turning dynamic typing into static typing by

program specialization in a compiler front-end for Octave,” in Proc. 3rd
IEEE Int. Workshop on Source Code Analysis and Manipulation
(SCAM’03), 2003, 26-27 Sept. 2003, pp. 141-150.

[27] Stratego/XT, http://www.stratego-language.org.
[28] J.M.P. Cardoso, J.M. Fernandes, and M. Monteiro, “Adding Aspect-

Oriented Features to MATLAB,” in SPLAT! 2006, Software
Engineering Properties of Languages and Aspect Technologies,
workshop affiliated with AOSD 2006, March 21, 2006. Bonn, Germany.

[29] J.M.P. Cardoso, et al., “A Domain-Specific Aspect Language for
Transforming MATLAB Programs,” in Domain-Specific Aspect
Language Workshop (DSAL’2010), part of AOSD’2010, March 15-19,
2010, Rennes & Saint Malo, France.

[30] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren, “AspectMatlab: An
Aspect-Oriented Scientific Programming Language”, in Proc. Aspect
Oriented Software Development Conference (AOSD), March 2010,
ACM, NY, USA, pp. 181-192.

[31] P. Martins, et al., “Program and Aspect Metrics for MATLAB,” in Proc.
12th Int. Conf. on Computational Science and Applications (ICCSA’12),
June 18-21, 2012, Salvador de Bahia, Brazil. LNCS 7336, Springer-
Verlag, pp. 217–233.

