AutoPar-Clava: An Automatic Parallelization source-to-source
tool for C code applications

Hamid Arabnejad
Faculdade de Engenharia (FEUP)
Universidade do Porto
hamid.arabnejad@fe.up.pt

Jorge G. Barbosa
Faculdade de Engenharia (FEUP)
Universidade do Porto, LIACC
jbarbosa@fe.up.pt

ABSTRACT

Automatic parallelization of sequential code has become increas-
ingly relevant in multicore programming. In particular, loop paral-
lelization continues to be a promising optimization technique for
scientific applications, and can provide considerable speedups for
program execution. Furthermore, if we can verify that there are no
true data dependencies between loop iterations, they can be easily
parallelized.

This paper describes Clava AutoPar, a library for the Clava
weaver that performs automatic and symbolic parallelization of
C code. The library is composed of two main parts, parallel loop
detection and source-to-source code parallelization. The system is
entirely automatic and attempts to statically detect parallel loops
for a given input program, without any user intervention or profil-
ing information. We obtained a geometric mean speedup of 1.5 for
a set of programs from the C version of the NAS benchmark, and
experimental results suggest that the performance obtained with
Clava AutoPar is comparable or better than other similar research
and commercial tools.

KEYWORDS

Automatic parallelization, source-to-source Compilation, Parallel
Programming, OpenMP

1 INTRODUCTION

Multi and many-core programming is becoming a hot topic in the
field of computer architectures. Parallel computing is no longer lim-
ited to supercomputers or mainframes, moreover, personal desktop
computers or even mobile phones and electronic portable devices
can have benefits from parallel computing capabilities. In order
to utilize the full capabilities of processors, parallel computing
platforms can be beneficial and helpful for application develop-
ment cycle. But, it requires some level of knowledge about parallel
paradigms and system architecture making it more difficult for
programmers. Therefore, having a tool that accepts, as input, the
sequential version source file, automatically detects and recognizes
parallelizable segments without any prior knowledge provided by
user or program execution, and return the parallelized version,
would be of great usage.

Joao Bispo
Faculdade de Engenharia (FEUP)
Universidade do Porto, INESC-TEC
jbispo@fe.up.pt

Joao M.P. Cardoso
Faculdade de Engenharia (FEUP)
Universidade do Porto, INESC-TEC
jmpc@fe.up.pt

Most of the execution time of CPU-intensive applications are
often spent in nested loops. As a potential solution, paralleliza-
tion can help to distribute the overall execution among available
threads by sharing processing units and reduce the total execution
time. OpenMP [11] is a simple and portable application program-
ming interface (API), that supports many functionalities required
for parallel programming. OpenMP provides several environment
variables for controlling the execution of parallel code at run-time.
However, dealing with issues, such as data dependency, synchro-
nization and race conditions, make it not an easy task for users.
Therefore, automatic code parallelization is very attractive and a
challenging area since the process of parallelization and optimiza-
tion should be done without any effort from the programmer.

In this paper, we focus particularly on source-to-source compi-
lation which uses C-code as an input, and returns the parallelized
version, annotated by OpenMP directives, as the output without
any user interaction. The proposed AutoPar-Clava tool acts as
an engine that analyses the input source code and parallelizes the
code segments which have no dependencies or race conditions.
To improve the AutoPar-Clava tool capability of detecting and
increasing the number of parallel loops, some techniques such as
variable privatization and parallel reduction are used. The principal
phases of the proposed framework include: (i) preprocessing of the
sequential code, (ii) dependency analysis, (iii) parallelization engine,
and (iv) code generation.

The rest of paper is organized as follows. Section 2 discusses
about the background of automatic parallelization tools with a
brief description of some well-known approaches. The proposed
approach, AutoPar-Clava, is introduced and discussed in details
in Section 3. Section 4 presents results of an experimental study. Fi-
nally, section 5 draws conclusions and briefly outlines AutoPar-Clava
future path as a live and ongoing project.

2 OVERVIEW OF AUTOMATIC
PARALLELIZATION TOOLS

Source-based automatic parallelization tools accept the code of a
program as input, and create a parallelized version. If the analysis is
done based only on the source code, without information about the
program execution, it is considered that the tool does static analysis
(as opposed to dynamic analysis). A lot of effort has been put into
dynamic analysis tools [15, 26], which extend the information that is

possible to obtain from the source code of a program by executing
the application and gather runtime information. However, such
tools are usually harder to use (e.g., require the user to prepare the
program in order to be explored), or can take longer time to execute
(up to several orders of magnitude), when compared with static
analysis tools. Orthogonal to both approaches, it is also possible
to improve parallelization analysis if the tools allow the user to
provide additional information (e.g., which variables can be ignored
from dependency analysis).

In this paper, we mainly focus on parallelization tools which are
not guided by runtime execution or by user information. Therefore,
we will briefly discuss tools which perform automatic static analysis
for loop parallelization.

Cetus [4, 12, 16] is a source-to-source compiler for ANSI C pro-
grams developed by Purdue University. Cetus uses static analyses
such as scalar and array privatization, reduction variables recog-
nition, symbolic data dependency testing, and induction variable
substitution. It uses the Banerjee-Wolfe inequalities [28] as a data
dependency test framework, also contains the range test [8] as an
alternative dependency test. Cetus provides auto-parallelization of
loops through private and shared variables analysis, and automatic
insertion of OpenMP directives.

ROSE [23, 24] is an open source compiler, and provides source-
to-source program transformation and analysis tools for C, C++ and
Fortan applications. ROSE provides several optimizations including
autoparallelization, loop unrolling, loop blocking, loop fusion, and
loop fission. As a part of ROSE source-to-source compiler infras-
tructure, Auto-Par is the automatic parallelization tool used to
generated OpenMP code versions of sequential code.

Pluto [9] is a fully automatic polyhedral source-to-source pro-
gram optimizer tool. It translates C loop nests into an interme-
diate polyhedral representation called CLooG [7] (Chunky Loop
Generator). With ClooG[6] format, the loop structure and its data
dependency and memory access pattern are kept, without its sym-
bolic information. By using this model, Pluto is able to explicitly
model tiling and to extract coarse grained parallelism and locality,
and finally, transforms the loop structure while maintain seman-
tics. However, it only works on individual loops, which have to be
marked in the source code using pragmas.

Par4All [3, 27] is an automatic parallelizing and optimizing com-
piler for C and Fortran, and has back-ends for OpenMP, OpenCL
and CUDA. The automatic transformation process is based on PIPS
(Parallelization Infrastructure for Parallel Systems) which is a frame-
work for source-to-source for program analysis, optimization and
parallelization. Par4all does array privatization, reduction variable
recognition and induction variable substitution.

The auto-parallelization feature of the Intel Compiler [2] auto-
matically detects loops that can be safely and efficiently executed
in parallel and generates multi-threaded code of the input program.
To detect loops that are candidates for parallel execution, it per-
forms data-flow analysis to verify correct parallel execution, and
internally inserts OpenMP directives. The Intel Compilers support
variable privatization, loop distribution, and permutation.

TRACO [18, 19] is a loop parallelization compiler. It is based
on the iteration space slicing framework (ISSF) and the Omega
Calculator library, while loop dependence analysis is calculated by

means of the Petit [14] tool. Output code is compilable and contains
OpenMP directive.

3 OVERVIEW OF AUTOPAR-CLAVA

This section describes the AutoPar library written in LARA [10] for
the Clava source-to-source compiler. The library accepts complete,
unmodified programs and is capable of fully automatic generation
of C code annotated with OpenMP directives. When AutoPar is not
able to parallelize a loop, it provides information about the causes.

Identifying parallelizable segments (i.e. loops) is a crucial and
difficult step in auto-parallelization approaches. In the absence of
additional information from program execution or the user, iden-
tifying the data dependency relations are the most challenging
and complex stage. Generally, long-running applications have a set
of loops (e.g., for) that are responsible for most of the execution
time of the program. When consecutive iterations of a loop are not
data-dependent, they can be executed in parallel (e.g., in different
threads), potentially improving the execution time in multi-core
architectures. However, there are cases where even when there
are data-dependencies, parallelization of loop iterations is possi-
ble. For instance, reduction operations gather a result from several
iterations that, absent that operation, could be independent. Cur-
rent parallel frameworks, such as OpenMP, provide tools to handle
cases like this, and an important goal of an automatic parallelization
framework is to be able to identify these situations in the source
code.

3.1 Clava

Clava! is a source-to-source compiler that is capable of analyzing
and transforming C/C++/OpenCL code. It is based on the LARA
framework, which uses the Domain-Specific Language (DSL) LARA
[10] to describe source-code analysis and transformations. The lan-
guage provides specific keywords and semantics that allow queries
to points of interest (i.e. join points) in the source code (e.g., file,
function, loop). Join points provide attributes for querying infor-
mation about that point in the code (e.g., $function.name), and ac-
tions, which apply transformations to that point (e.g., $vardecl.exec
setType(’float’)). LARA also provides general-purpose compu-
tation by accepting arbitrary JavaScript code in LARA files.

| AutoPar
| Clava

¥ CLAVA b = 5

~B— @

ClangAst.exe Clang AST

Clava Custom

(binary) Parser C/C++ AST Framework :
[CfC++ Parallelized l£—
Input OpenMP ==
File code ==

OpenMP

Figure 1: Clava block diagram

Figure 1 shows a block diagram of the Clava tool. Clava is mostly
implemented in Java, and internally uses a binary based on Clang

!https://specs.fe.up.pt/tools/clava

[1] to dump information about C/C++ programs. This information
is then parsed and used to build a custom AST in Java, which the
LARA framework uses in the queries, modifications and source-
code generation specified by LARA code. With Clava, users can
create custom program analyses and transformations using a high-
level programming model based on aspect-oriented concepts and
JavaScript.

3.2 Loop Parallelization

Loop parallelism is a common form of parallelism that can be found
in several types of programs (e.g., scientific models). Typically, a
loop can be parallelized by using OpenMP directives if it follows a
certain canonical form, and respects certain restrictions, such as
not containing any break, exit and return statements. However,
checking for situations such as data dependencies, data conflicts,
race conditions or deadlocks are responsibility of the OpenMP user.
In a first stage of our approach, AutoPar detects and marks all loops
that can be parallelized. Then, in a second stage, this information
is used to decide which loops should be parallelized. In this work
we present a strategy that only parallelizes the outermost loop, in
order to reduce the parallelization overhead. However, it is entirely
possible to use the same information to create other strategies (e.g.,
to target other loops).

3.3 Dependence Analysis

An important element in any auto parallelizer tool is the data
dependency analysis, which determines if a loop can be paral-
lelized or not. Loop dependencies can be classified in two main
categories: (1) dependencies within one loop iteration, i.e. loop-
independent dependencies, and (2) dependencies between different
iterations, i.e. loop-carried dependencies. Additionally, the results of
the data dependency analysis will be used to determine the proper
OpenMP scoping of the variables used in the loop (e.g., private,
firstprivate, lastprivate), or if a variable is the target of a
reduction or privatization.

The AutoPar-Clava tool uses separate dependency analysis
steps for scalar and array variables. For arrays it uses Petit [14] and
the Omega [22] library, which can be time consuming. In order to
reduce the total execution time of analysis, if the scalar dependency
analysis is not successful, the array dependency analysis will not
be executed, and the loop will not be considered for parallelization.
After we apply dependency analysis, a loop is considered for par-
allelization if for all scalar and array variables, it was determined
that: (i) they have no true dependencies, or (ii) they have a true de-
pendency, but are a reduction operation, or (iii) they have a false
dependency so that it can be resolved by loop-private variables.

3.3.1 dependence analyzer for scalar variables. To perform de-
pendency analysis on scalar variables, first we do liveness analysis
over all statements in the loop, in order to find how each reference
to a scalar variable is used. Clava allows, for each statement, to
extract the list of variables that were referenced, and how they were
used (i.e., Read, Write or ReadWrite). By applying this process to
all statements, we can create an access pattern for each variable,
e.g., RWRRRRRRR. This pattern can then be compressed by removing
consecutive repetitions from it, e.g., RAR, and based on this usage
pattern, we identify the data dependencies of the scalar variables.

At a later step, we re-use these patterns to classify each variable
into the proper OpenMP scoping, e.g, if a variable has the pattern
R, it can be set as firstprivate. Variable reduction detection is
handled by a pattern matching algorithm created to conform to the
rules specified by OpenMP.

3.3.2 dependence analyzer for arrays. The most common obsta-
cle to loop parallelization are loop-carried dependencies over array
elements. Array elements can be characterized by subscript expres-
sions, which usually depend on loop index variables. The main
goal of an array dependency analysis is to find the cross-iteration
distance vectors for each array reference. There are already sev-
eral works that use array subscripts to determine if different loop
iterations are independent or not (e.g., GCD (Greatest Common
Divisor)[5], Extended GCD [17], Banerjee [5], Omega [20, 21]). Our
proposed approach, AutoPar-Clava uses the Petit [14], a free re-
search tool for analyzing array data dependences, developed by the
same team of Omega library project?. Petit accepts as input, code
for a loop written in a language similar to Fortan 77. In turn, it
outputs information about each dependency in the loop: (i) the type
of dependency (i.e. flow, anti or output), (ii) the location (i.e. code
line and corresponding variable name for the source and the desti-
nation of the dependency), (iii) the distance vector. Our two major
challenges were 1) to provide the correct input to Petit, and 2) to
interpret its output. For AutoPar-Clava we developed a translation
layer that converts C loops into the code that Petit requires, and
a parser that extracts the information we need from Petit output.
However, there were challenges that we could not solve, mainly
Petit’s memory usage, which crashes for very large loops

3.4 AutoPar-Clava Library

AutoPar-Clava performs the steps shown in Algorithms 1 and 2.

Algorithm 1: AutoPar

Input :C code
Output:C code with OpenMP pragmas

-

Load input C program

Generate Clava AST

forall loop in C file do

4 if loop has OpenMP canonical loop form then

)

@

5 ‘ Mark loop as a candidate loop for parallelization
6 end
7 end

8 foreach candidated loop do

9 forall function call within loop body do

10 ‘ Apply Clava inline action to function calls
1 end

12 Call loop-Parallelization function (Algorithm 2)

13 end

14 return parallelized version of C input program annotated by
OpenMP directives

http://www.cs.umd.edu/projects/omega/

Algorithm 2: Loop-Parallelization

Input :candidate loop
Output: parallelized loop

if loop contains unparallelizable function call then
Skip parallelization process

[

©w

return loop without OpenMP directives
4 end
Perform liveness analysis for all statements in loop body

3

=Y

Build the usage pattern for scalar and array variables
Call dependency analyzer for all variables

g

®

Categorize variables into OpenMP variable classes according
to their usage pattern

Insert the OpenMP directive and its corresponding variables if
no data dependencies, data conflicts and race conditions are
found

©

10 return parallelized version of loop, annotated by OpenMP
directives

The main idea is to find the dependencies of all scalar and array
variables inside the loop candidates, and minimize the scope of
the variables inside the parallel loop as much as possible, based on
their usage pattern. Finally, if no dependencies are detected, the
parallelization process will add OpenMP directives to the loop.

4 EXPERIMENTAL EVALUATION

In this section we describe the evaluation of our proposed approach,
regarding the effectiveness of the detection of parallel loops, e.g.,
how many loops are found.

4.1 Comparison with previous approaches

Taking into account that Clava AutoPar performs automatic static
parallelization over unmodified source-code, we consider that among
the tools presented on Section 2, the ones closest to AutoPar are
ROSE, the Intel ICC compiler and TRACO. For the ROSE compiler,
we used the newest available VM3, which has Ubuntu 16.04 (Xe-
nial Xerus) with ROSE using the EDG 4.12 frontend. As part of the
ROSE compiler, autoPar tools can automatically insert OpenMP
pragmas in C/C++ codes. The autoPar’s version installed in the
VM is v0.9.7.188. For Intel ICC compiler, we used the version 18.0.0,
with the free student license. TRACO compiler was downloaded
from the public svn repository* provided by its development team.

Since that our target in this paper is providing automatic paral-
lelization tools as a source-to-source transformation without any
changes in terms of loop structure such as loop tiling, among all
auto parallelization tools presented on Section 2, we only chose
ROSE, intel ICC compiler and TRACO.

4.2 Experimental setup

In this section we summarize our experimental setup, and pro-
vide details of the platform and benchmark used throughout the
evaluation.

3https:// en.wikibooks.org/wiki/ROSE_Compiler_Framework/Virtual Machine_Image
“https://sourceforge.net/projects/traco/

4.2.1 Platform. We evaluated the benchmarks on a desktop PC
machine with an Intel Core i5-6260U processor running at 1.80GHz,
16 GB of RAM, under Ubuntu 17.10 64bits as operating system.

4.2.2 Benchmark. For our evaluation, we select the NAS Paral-
lel Benchmarks (NPB)®, which provides both serial and manually
parallelized OpenMP version for each benchmark. More specifically,
we have used the SNU NPB Suite® which is a C and OpenMP C[25]
implementation of the original NPB v3.3, which is in FORTRAN.
This version is provided by the Center for Manycore Programming,
of Seoul National University. For the NPB benchmarks, we used
four input classes, namely S, W, A, and B. Class S is the smallest in-
put, class Bis the largest one, and classes W and A are medium size
inputs for a single machine. From the 8 programs available in NPB,
for our evaluation we selected six: BT (Block Tri-diagonal solver),
CG (Conjugate Gradient, irregular memory access and communi-
cation), EP (Embarrassingly Parallel), SP (Scalar Penta-diagonal
solver), IS (Integer Sort, random memory access), and LU (Lower-
Upper gauss-seidel solver).

Additionally, there are two other benchmark in NPB which we
did not consider for our evaluation. For UA (Unstructured Adaptive
mesh, dynamic and irregular memory access) benchmark, the paral-
lel hand version did not show any improvement over the sequential
code in our experiment. And, due to space limitation for this paper,
we did not present the results of MG (Multi-Grid on a sequence of
meshes, long-and short-distance communication, memory inten-
sive) which are similar to LU benchmark, i.e., both parallelized code
generated by AutoPar-Clava and icc, increase the execution time
compared to sequential code.

4.2.3 Methodology. We evaluated four automatic parallelization
approaches: (1) manual parallelization by an expert (ParallelHand),
(2) our proposed approach (AutoPar-Clava), (3) auto paralleliza-
tion using the Intel ICC compiler (icc) and (4) auto paralleliza-
tion using the autoPar tool from the ROSE compiler framework
(autoPar-ROSE). For both the sequential (i.e., original serial code)
and the parallel OpenMP (i.e., parallelized with tools and man-
ually) versions, we used the gcc” compiler v7.2.0 with flags -g
-03 -mcmodel=medium. The flag -fopenmp was also used with the
OpenMP versions. For each NPB benchmark, each experiment was
repeated 15 times and the average execution time was recorded.
Also, for Intel icc compiler, we used the -parallel flag to enable
the auto-parallelizer to generate multi-threaded code.

4.2.4 Comparison metric. To compare and discuss our experi-
mental results, we have measured execution time, and then calculate
the speedup of each approach. Speedup was defined as the ratio of
the execution time of the sequential code to that of the parallelized
version. Additionally, in order to evaluate the ability of each tool
to detect parallelism, we compared the number of parallel loops in
the target code obtained by each approach. However, the number
of parallel loops can be a misleading metric, since some loops are
more critical to the running time of a program than others [13].

Shttps://www.nas.nasa.gov/publications/npb.html
Chttp://aces.snu.ac.kr/software/snu-npb/
"https://gee.gnu.org

BN ParallelHand [AutoPar-Clava
[ice [T autoPar-ROSE ice

Speedup

Unsuccessful
Unsuccessful

Unsuccessful

Unsuccessful

2
3
% 15
s
S 1
&
0.5 !
0 0

N ParallelHand [AutoPar-Clava
[T autoPar-ROSE [ice

BN ParallelHand [AutoPar-Clava
[T autoPar-ROSE

Speedup

LELL

CLASS = A CLASS = B CLASS = § CLASS = W CLASS = A CLASS = B

(a) BT (Block Tri-diagonal solver)

BN ParallelHand [AutoPar-Clava
ice [T autoPar-ROSE ice

Speedup
Unsuccessful
Unsuccessful
Unsuccessful
Unsuccessful

Speedup

Not Parallelized

0 0

(b) EP (Embarrassingly Parallel)

N ParallelHand [AutoPar-Clava
[T autoPar-ROSE [ice

Not Parallelized

CLASS = S CLASS = W CLASS = A CLASS = B CLASS = § CLASS = W

(c) CG (Conjugate Gradient, irregular memory access
and communication)

BN ParallelHand [AutoPar-Clava
[T autoPar-ROSE

Speedup

Not Parallelized
Not Parallelized
Not Parallelized
Not Parallelized
Not Parallelized
Not Parallelized

CLASS = A CLASS = B CLASS = S CLASS = W CLASS = A CLASS = B

(d) SP (Scalar Penta-diagonal solver)

(e) IS (Integer Sort, random memory access)

CLASS = 8§ CLASS = W CLASS = A CLASS = B CLASS = 8 CLASS = W

(f) LU (Lower-Upper gauss-seidel solver)

Figure 2: Speedups of the NAS benchmarks obtained by ParallelHand, icc, ROSE and AutoPar-Clava

4.3 Results

Figure 2 demonstrates the speedup of the parallelized versions over
the sequential version, for each approach. Each graph of the figure
contains a red zone that represents slowdowns (i.e., speedups below
1). We consider that values above the red zone are considered as the
safe zone. Among the selected tools, TRACO could not parallelize
any of the NAS programs (it failed during execution), and was not
included in the figure.

The manually parallelized OpenMP versions achieved a speedup
between 1x and 3X, considering all programs and input sizes. The
highest speedup was achieved by the program EP. This is not sur-
prising, since this hand-parallelized version has several source-code
modifications besides the OpenMP pragmas, such as using thread-
local arrays to save and collect temporary results.

The Intel ICC compiler has the best performance of the tools we
tested, and generally has very consistent performance. ICC uses
heuristics that usually choose the correct loops to parallelize.

For the ROSE compiler, we had several problems. Among six
programs, autoPar could not parallelize two, IS and LU (labeled in
Figure 2 as Not Parallelized). Of the remaining four, two programs,
BT and SP, did not pass the validation. This means that the tool
inserted OpenMP pragmas in loops that should not have been
parallelized, or that the inserted OpenMP pragmas have incorrect
or incomplete clauses. For the programs that could be parallelized
and that passed validation, it had consistently worse results than
the other versions, except for CG with input class B.

AutoPar-Clava was able to parallelize the six programs and pass
the validation step. For three of the programs, BT, IS and LU, it had
performance that was either not far, or close to ICC. For the other
three programs, AutoPar-Clava could achieve better performance
than ICC, and in two cases, EP and CG, performed significantly

better. Also, for the programs EP, CG and SP, it has performance
that is close or very close to the parallel hand version.

From our experiences, we consider that the main reason for the
AutoPar-Clava improvements are due to the use of Clava inline
action. Inlining function calls provides a significant improvement
on the ability to detect parallelism. By examining ROSE source code
and the output of icc, we noticed that they do not consider loops
for parallelization when they contain function calls.

Please note that function inlining is only used during the analysis
phase, and all changes in the code due to inlining are discarded
before generating the code with OpenMP pragmas. Also, the inline
action is still in an initial phase, and may not be applicable to many
types of function calls (e.g., it does not support functions with
multiple exit points).

It should be mentioned that for the program BT, we performed
manual tests that indicate that AutoPar-Clava should be able to
obtain performance close to the ParallelHand version. Currently
this is not possible due to memory issues in Petit, which is not able
to handle certain loops after function calls are inlined. We expect
to solve this limitation in future work.

Table 1 shows the number of loops that each tool parallelized. For
AutoPar-Clava we also show, between parenthesis, the total num-
ber of loops that were detected as possible to be parallelized.

For AutoPar-Clava, AutoPar-ROSE and ParallelHand we counted

the number of loops parallelized with OpenMP in the source code.
Since icc produces an executable binary instead of source-code, we
used the flag -qopt-report=5 to generate a report that indicates
which loops were parallelized (Level 5 produces the greatest level
of detail).

NAS Parallelized loop

Benchmark AutoPar-Clava icc AutoPar-ROSE ParallelHand

BT 17/(28) 12 115 30
EP 2/(6) 1 3 1
CcG 20/(21) 9 24 18
SP 20/(29) 33 185 34
IS 3/(4) 2 - 1
LU 29/(38) 17 - 33

Table 1: Number of parallelized loops

Intel icc uses an internal cost model to decide if a loop should
be parallelized or not. In some cases (i.e., BT, CG, IS and LU), the
number of parallelized loops is considerably lower than the number
of loops that were parallelized by hand. They correspond to the
cases where icc got a speedup close to 1X (see Figure 2).

The opposite happens in autoPar-ROSE. The tool tries to par-
allelize as many loops as possible, even when they are inside an
already parallelized loop. This kind of nested parallelism can cause
undesired overhead due to oversubscription, and it could explain
the overall performance of ROSE.

In this work AutoPar-Clava uses a strategy that only parallelizes
the outermost loops. The number of parallelized loops are higher
than icc for all programs, except SP, but are mostly less than the
number of loops parallelized by hand.

In summary, we consider that the AutoPar library for Clava
shows high effectiveness regarding loop detection, when compared
with other similar tools, and is capable of generating code that
achieves performance that is generally comparable with other tools,
and in some cases, close to versions parallelized by hand by an
expert.

5 CONCLUSIONS AND FUTURE WORK

In this paper we presented AutoPar, an automatic parallelization
library for the C/C++ source-to-source compiler Clava. This library
is currently capable of parallelizing C programs with OpenMP
pragmas without any user intervention or guidance from an profil-
ing phase. The library tries to preserve the original code as much
as possible, and inserts OpenMP parallel-for directives and
the necessary clauses, such as private, shared, firstprivate,
lastprivate, and reduction. It can also use the atomic directive
in some cases, to solve array dependencies.

In the future, we will extend our approach to recognize and
classify more OpenMP directives, such as task or SIMD, which can
improve code parallelization. Further work also includes testing
the performance of our approach on other benchmarks, such as
PolyBench®, and improve the memory limitations we currently
have regarding Petit.

6 ACKNOWLEDGMENTS

This work was partially funded by the ANTAREX project through
the EU H2020 FET-HPC program under grant no. 671623. Joao Bispo

8http://web.cs.ucla.edu/ pouchet/software/polybench/

acknowledges the support provided by Fundagdo para a Ciéncia e a

Tecnologia, Portugal, under Post-Doctoral grant SFRH/BPD/118211/2016.

REFERENCES

[1]
[2]
[3]

4

(10]

[11
[12]

=
&

(14

[15

(16]

[17

(18

=
2

[20]

[21

[22]

(23]
[24]

[25

[26

[27]

[28

clang: a C language family frontend for LLVM. (????). http://clang llvm.org/.
2013. Intel C++ Compiler. (2013). https://software.intel.com/en-us/c-compilers/.
M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S. Guelton, J. McMahon,
F. Pasquier, G. Péan, and P. Villalon. 2012. Par4all: From convex array regions to
heterogeneous computing. In IMPACT 2012: Second International Workshop on
Polyhedral Compilation Techniques HiPEAC 2012.

Hansang Bae, Dheya Mustafa, Jae-Woo Lee, Hao Lin, Chirag Dave, Rudolf Eigen-
mann, and Samuel P Midkiff. 2013. The cetus source-to-source compiler infras-
tructure: overview and evaluation. International Journal of Parallel Programming
(2013), 1-15.

Utpal Banerjee. 2007. Loop transformations for restructuring compilers: the foun-
dations. Springer Science & Business Media.

Cédric Bastoul. 2003. Efficient code generation for automatic parallelization and
optimization. In Proceedings of the Second international conference on Parallel and
distributed computing. IEEE Computer Society, 23-30.

Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier
Temam. 2003. Putting polyhedral loop transformations to work. In Interna-
tional Workshop on Languages and Compilers for Parallel Computing. Springer,
209-225.

William Blume and Rudolf Eigenmann. 1994. The range test: a dependence test
for symbolic, non-linear expressions. In Supercomputing’94., Proceedings. IEEE,
528-537.

Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy
Sadayappan. 2008. A practical automatic polyhedral parallelizer and locality
optimizer. In ACM SIGPLAN Notices, Vol. 43. ACM, 101-113.

Jodo MP Cardoso, Tiago Carvalho, José GF Coutinho, Wayne Luk, Ricardo Nobre,
Pedro Diniz, and Zlatko Petrov. 2012. LARA: an aspect-oriented programming
language for embedded systems. In Proceedings of the 11th annual international
conference on Aspect-oriented Software Development. ACM, 179-190.

Rohit Chandra. 2001. Parallel programming in OpenMP. Morgan kaufmann.

C. Dave, H. Bae, S. Min, S. Lee, R. Eigenmann, and S. Midkiff. 2009. Cetus: A
source-to-source compiler infrastructure for multicores. Computer 42, 12 (2009).
Michael Hind, Michael Burke, Paul Carini, and Sam Midkiff. 1994. An empirical
study of precise interprocedural array analysis. Scientific Programming 3, 3 (1994),
255-271.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. 1996.
New User Interface for Petit and Other Extensions. User Guide 1 (1996), 996.
Minjang Kim, Nagesh B Lakshminarayana, Hyesoon Kim, and Chi-Keung Luk.
2013. SD3: An Efficient Dynamic Data-Dependence Profiling Mechanism. IEEE
Trans. Comput. 62, 12 (2013), 2516-2530.

Sang-Ik Lee, Troy A Johnson, and Rudolf Eigenmann. 2003. Cetus—-an extensible
compiler infrastructure for source-to-source transformation. In International
Workshop on Languages and Compilers for Parallel Computing. Springer, 539-553.
Dror E Maydan, John L Hennessy, and Monica S Lam. 1991. Efficient and exact
data dependence analysis. In ACM SIGPLAN Notices, Vol. 26. ACM, 1-14.

Marek Palkowski and Wlodzimierz Bielecki. 2015. TRACO Parallelizing Compiler.
In Soft Computing in Computer and Information Science. Springer, 409-421.
Marek Palkowski and Wlodzimierz Bielecki. 2017. TRACO: Source-to-Source
Parallelizing Compiler. Computing and Informatics 35, 6 (2017), 1277-1306.
William Pugh. 1991. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE conference
on Supercomputing. ACM, 4-13.

William Pugh. 1992. A practical algorithm for exact array dependence analysis.
Commun. ACM 35, 8 (1992), 102-114.

William Pugh and David Wonnacott. 1993. An exact method for analysis of
value-based array data dependences. In International Workshop on Languages and
Compilers for Parallel Computing. Springer, 546-566.

Dan Quinlan. 2000. ROSE: Compiler support for object-oriented frameworks.
Parallel Processing Letters 10, 02n03 (2000), 215-226.

Dan Quinlan, Chunhua Liao, Justin Too, Robb P Matzke, and Markus Schordan.
2012. ROSE compiler infrastructure. (2012).

Sangmin Seo, Gangwon Jo, and Jaejin Lee. 2011. Performance characterization of
the NAS Parallel Benchmarks in OpenCL. In Workload Characterization (ISWC),
2011 IEEE International Symposium on. IEEE, 137-148.

Georgios Tournavitis and Bjorn Franke. 2010. Semi-automatic extraction and
exploitation of hierarchical pipeline parallelism using profiling information. In
Int. Conf. on Parallel Architectures and Compilation Techniques. IEEE, 377-388.
N. Ventroux, T. Sassolas, A. Guerre, B. Creusillet, and R. Keryell. 2012.
SESAM/Par4All: a tool for joint exploration of MPSoC architectures and dynamic
dataflow code generation. In Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools. ACM, 9-16.

Michael Wolfe. 1989. Optimizing supercompilers for supercomputers. (1989).

http://clang.llvm.org/
https://software.intel.com/en-us/c-compilers/

	Abstract
	1 Introduction
	2 Overview of Automatic parallelization Tools
	3 Overview of AutoPar-Clava
	3.1 Clava
	3.2 Loop Parallelization
	3.3 Dependence Analysis
	3.4 AutoPar-Clava Library

	4 Experimental evaluation
	4.1 Comparison with previous approaches
	4.2 Experimental setup
	4.3 Results

	5 Conclusions and Future Work
	6 Acknowledgments
	References

