

Our system is a combination of server-

side and client-side navigation which

aims to provide the most efficient navi-

gation in the context of smart cities.

The routes are provided with regard to

a global optimum for a city. This is a

complex task which requires the com-

putational power of the HPC infrastructure. Efficient operation of

the system is supported by the custom domain-specific lan-

guage (DSL) LARA and the autotuning framework being developed within the ANTAREX project.

Probabilistic Time-Dependent Travel Time Computation algorithm has been selected for the demonstration of the DSL and

autotuning framework. The input for the algorithm is a departure time for a selected

route represented as a line of road segments. The algorithm provides estimated proba-

bility distribution of the travel time along the specified route.

The computation is based on the Monte Carlo simulation. It randomly selects probabil-

ity speed profiles on road segments and computes travel time at the end of the route.

Number of random samples

greatly affects precision of

the result. Many simulations

have to be executed in order

to satisfy demand for the

precise results of the simula-

tion in the context of the

smart city.

Self-adaptive Navigation System Instrumentation via DSL Autotuning Integration

aspectdef MeasureExecTime {
 input fname, store, end
 select function.call{name==fname} end
 apply
 insert.before %{auto startTime =
std::chrono::high_resolution_clock::now();}%;
 if(store != undefined) {
 insert.after ‘[[store]] =
std::chrono::duration_cast<std::chrono::millisecon
ds>(std::chrono::high_resolution_clock::now() -
startTime).count();’;

 } else {
 insert.after
‘std::chrono::duration_cast<std::chrono::milliseco
nds>(std::chrono::high_resolution_clock::now() -
startTime).count();’;
}
 end
}

LARA ASPECT LARA ASPECT
aspectdef ObserveScalability {
 input fname, inc, max_threads, runs end
 select function.call{name==fname} end
 apply
 insert.before %{‘
 for (int threads = 1; threads <= [[max_threads]];
threads += [[inc]]) {
 omp_set_num_threads(threads);
 std::vector<long> times([[runs]]);
 std::vector<int> results([[runs]]);
 for(int r = 0; r < runs; r++) {
 }%
 insert.replace ‘results[r] =
[[$call.statement]]’;
 insert.after %{‘
 }
 int sum = 0;
 for (int r = 0; r < [[runs]]; ++r)
 {
 sum += times[r];
 }
 float average = (sum/runs);
 }
 }%
 end

aspectdef MeasureScalability
{

 Call MeasureExecTime(“times[r]”);

 Call ObserveScalability
(“RunMonteCarloAll”, 1, 16, 100);

}

INSERT OPENMP PRAGMA
aspectdef OMPParFors {
 input fname end
 select function{name==fname}.loop end
 apply

 if($loop.is_parfor && $loop.is_outermost) {
 insert.before ‘#pragma omp parallel for’;
 }
 end
}

std::vector<float> RunMonteCarloAll(int samples, int secs,) {
...
 #pragma omp parallel for
 for (int s = 0; s < samples; ++s) {
 for (int d = 0; d < 7; ++d) {
 for (int i = 0; i < intervalsPerDay; ++i) {
 viRngUniform(VSL_RNG_METH_UNIF_STD, rndStream, probsSize,
probs,0, INDEX_RESOL);
 travelTimes[(d * intervalsPerDay * samples) + (i * samples) +
s] = GetRandomTravelTime(secs, probs);
 }
 }
 }
...

INSTRUMENTED CODE

EXPOSE SOFTWARE KNOBS
aspectdef OMPCtrThreads {
 input fname, knob=“threads” end
 select function.call{name==fname} end
 apply
 insert.before %{omp_set_dynamic(0);
 omp_set_num_threads([[$knob]]);}%;
 }
 end
}

INTEGRATE AUTOTUNER
aspectdef AutoTuneThreads {
 input fname end
 select function.call{name==“omp_set_num_threads”} end
 apply
 insert.before ‘Margo::MC::update([[$call.arg]]);’;
 end

 select function{name==fname} end
 apply
 insert.before ‘Margo::MC::start_monitor();’;
 insert.after ‘Margo::MC::end_monitor();’;
 end
}

...
omp_set_dynamic(0);
Margo::MC::update(&threads);
omp_set_num_threads(threads);
Margo::MC::start_monitor();
RunMonteCarloAll(segments, samples);
Margo::MC::end_monitor();
...

INSTRUMENTED

GOALS AND PARAMETERS
<!-- SW-KNOB SECTION -->
<knob name="num_threads" var_name="threads" var_type="int”/>

<!-- GOAL SECTION -->
<goal name=“MC_responseTime_goal”
monitor=“MC_responseTime_monitor" dFun="Average" cFun="LT" value=“MC_SLA” />

<!-- OPTIMIZATION SECTION -->
<state name="power_optimized" starting="yes" >
 <minimize combination="linear">
 <metric name=“MC_avg_power" coef="1.0"/>
 </minimize>
 <subject to=“MC_responseTime” metric_name="MC_responseTime" priority="1" />
</state>

DSL and Autotuning Tools for Code Optimisation

on HPC Inspired by Navigation Use Case

Jan Martinovič, Kateřina Slaninová

and Martin Golasowski
IT4Innovations,

VŠB - Technical University of Ostrava

Radim Cmar
Sygic Gianluca Palermo, Davide Gadioli,

and Cristina Silvano

DEIB,
Politecnico di Milano

Joao M. P. Cardoso, and Joao Bispo

FEUP,
University of Porto

AutoTuning and Adaptivity appRoach for

Energy efficient eXascale HPC systems

Scalability measurement of the simulation code instrumented by the DSL

No manual code changes are required. Performance of the code under different execution conditions is measured au-
tomatically by combination of several LARA aspects. The conditions are defined by several parameters:

 Number of OpenMP threads

 Thread scheduling strategy (compact, scatter)

 Cache usage strategy

Scalability on OpenMP threads
Single compute node, 2 x Intel® Xeon E5-2680v3 @ 2.5GHz, 12cores

The main goal of the ANTAREX project is to provide a breakthrough approach to express by a Domain Specific Language

the application self-adaptivity and to runtime manage and autotune applications for green and heterogeneous High

Performance Computing (HPC) systems up to the Exascale level.

 Dynamic self-monitoring and self-adaptivity or «autotuning» HPC applications with respect to changing work-

loads, operating conditions and computing resources

 Programming models and languages to express self-adaptivity and extra-functional properties

 Introducing a separation of concerns between extra-functional strategies (self-adaptivity, parallelisation,

energy/thermal management) and application functionality by the design of a new aspect-oriented Do-

main Specific Language
 Exploiting heterogeneous computing resources in Green HPC platforms by runtime resource and power manage-

ment

ANTAREX Project Goals

The domain specific language (DSL) and toolflow approach proposed in the ANTAREX project can pro-

vide the mechanisms needed for addressing properly the problems previously described. The DSL be-

ing developed is based on the LARA DSL and allows to specify strategies for code instrumentation and

code transformations, including the required code adaptation for dynamic autotuning.

Integration of mechanisms and strategies to on-line adapt the application behaviour and the platform con-

figuration with respect to changing workloads, operating conditions and computing resources.

 Searching the best combination of the

software knobs impacting the given met-

rics (for example execution time, energy

consumption, etc.)

 Definition of the goals to drive the optimi-

zation of the execution environment (for

example to comply with the target SLA)

Thread scheduling strategy
Intel® Xeon Phi 7210P @ 1.2 GHz, 61 cores

Cache usage strategy
Intel® Xeon Phi 7210P @ 1.2 GHz, 61 cores

Apart from the instrumentation, the aspects

can be used to define the optimization logic

which would select the best environment pa-

rameters (knobs) according to selected metric

(speedup, energy consumption, etc.).

Library of different instrumentation strategies

can be created, providing various useful anal-

yses of the code performance. The main ad-

vantage of this approach is separation of the

strategies (including instrumentation and code

transformations) from the actual source code.

The strategies can be programmed as generic

and applicable to wide range of different

source codes.

INSTRUMENTED SOURCE CODE

for (int threads = 1; threads <= max_threads; threads += increment) {
 omp_set_num_threads(threads);
 std::vector<long> times(runs);
 std::vector<int> results(runs);
 for(int r = 0; r < runs; r++) {
 auto startTime = std::chrono::high_resolution_clock::now();

results[r] = RunMonteCarloAll(segments, samples)[0];
 times[r] = std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::high_resolution_clock::now() - startTime).count();
 }
 int sum = 0;
 for (int r = 0; r < runs; ++r) {
 sum += times[r];
 }
 float average = (sum/runs);
 }

M
e
a
s
u
r
e
E
x
e
c
T
i
m
e

O
b
s
e
r
v
e
S
c
a
l
a
b
i
l
i
t
y

 AUTOTUNING

Toolset workflow

ANTAREX is supported by the EU H2020 FET-HPC program under grant 671623.

