
 

Our system is a combination of server-

side and client-side navigation which 

aims to provide the most efficient navi-

gation  in the context of smart cities. 

The routes are provided  with regard to 

a global optimum for a city. This is a 

complex task which requires the com-

putational power of the HPC infrastructure. Efficient operation of 

the system is supported by the custom domain-specific lan-

guage (DSL) LARA and the autotuning framework being developed within the ANTAREX project. 

Probabilistic Time-Dependent Travel Time Computation algorithm has been selected for the demonstration of the DSL and 

autotuning framework. The input for the algorithm is a departure time for a selected 

route represented as a line of road segments. The algorithm provides estimated proba-

bility distribution of the travel time along the specified route. 

The computation is based on the Monte Carlo simulation. It randomly selects probabil-

ity speed profiles on road segments and computes travel time at the end of the route. 

Number of random samples 

greatly affects precision of 

the result. Many simulations 

have to be executed in order 

to satisfy demand for the 

precise results of the simula-

tion in the context of the 

smart city.  

 

 

Self-adaptive Navigation System Instrumentation via DSL Autotuning Integration 

aspectdef MeasureExecTime { 
   input fname, store,  end 
   select function.call{name==fname} end 
   apply 
      insert.before %{auto startTime =     
std::chrono::high_resolution_clock::now();}%; 
      if(store != undefined) { 
        insert.after ‘[[store]] = 
std::chrono::duration_cast<std::chrono::millisecon
ds>(std::chrono::high_resolution_clock::now() - 
startTime).count();’; 

      } else { 
        insert.after 
‘std::chrono::duration_cast<std::chrono::milliseco
nds>(std::chrono::high_resolution_clock::now() - 
startTime).count();’; 
} 
   end 
} 

LARA ASPECT LARA ASPECT 
aspectdef ObserveScalability { 
   input fname, inc, max_threads, runs end 
   select function.call{name==fname} end 
   apply 
   insert.before  %{‘ 
 for (int threads = 1; threads <= [[max_threads]]; 
threads += [[inc]]) { 
            omp_set_num_threads(threads); 
            std::vector<long> times([[runs]]); 
            std::vector<int> results([[runs]]); 
            for(int r = 0; r < runs; r++) { 
      }% 
    insert.replace ‘results[r]  = 
[[$call.statement]]’; 
    insert.after  %{‘ 
       } 
       int sum = 0; 
       for (int r = 0; r < [[runs]]; ++r) 
       { 
   sum += times[r]; 
       } 
       float average = (sum/runs); 
      } 
     }% 
   end 

aspectdef MeasureScalability  
{ 

   Call MeasureExecTime(“times[r]”); 

   Call ObserveScalability
(“RunMonteCarloAll”, 1, 16, 100); 

} 

 

INSERT OPENMP PRAGMA 
aspectdef OMPParFors { 
   input fname end 
   select function{name==fname}.loop end 
   apply 

    if($loop.is_parfor && $loop.is_outermost) { 
         insert.before ‘#pragma omp parallel for’; 
       } 
   end 
} 

 

std::vector<float> RunMonteCarloAll(int samples, int secs,) { 
... 
   #pragma omp parallel for 
   for (int s = 0; s < samples; ++s) { 
    for (int d = 0; d < 7; ++d) { 
     for (int i = 0; i < intervalsPerDay; ++i) { 
      viRngUniform(VSL_RNG_METH_UNIF_STD, rndStream, probsSize, 
probs,0, INDEX_RESOL); 
      travelTimes[(d * intervalsPerDay * samples) + (i * samples) + 
s] = GetRandomTravelTime(secs, probs); 
          } 
      } 
   } 
... 

INSTRUMENTED CODE 

 

EXPOSE SOFTWARE KNOBS 
aspectdef OMPCtrThreads { 
   input fname, knob=“threads” end 
   select function.call{name==fname} end 
   apply 
      insert.before %{omp_set_dynamic(0); 
           omp_set_num_threads([[$knob]]);}%; 
       } 
   end 
} 

 

INTEGRATE AUTOTUNER 
aspectdef AutoTuneThreads { 
   input fname end 
   select function.call{name==“omp_set_num_threads”} end 
   apply 
      insert.before ‘Margo::MC::update([[$call.arg]]);’; 
   end 
 
   select function{name==fname} end 
   apply 
      insert.before ‘Margo::MC::start_monitor();’; 
      insert.after ‘Margo::MC::end_monitor();’; 
   end 
} 

 

... 
omp_set_dynamic(0); 
Margo::MC::update(&threads); 
omp_set_num_threads(threads); 
Margo::MC::start_monitor(); 
RunMonteCarloAll(segments, samples); 
Margo::MC::end_monitor(); 
... 

INSTRUMENTED 

 

GOALS AND PARAMETERS 
<!-- SW-KNOB SECTION --> 
<knob name="num_threads" var_name="threads" var_type="int”/> 
  
<!-- GOAL SECTION --> 
<goal name=“MC_responseTime_goal” 
monitor=“MC_responseTime_monitor" dFun="Average" cFun="LT" value=“MC_SLA” /> 
  
<!-- OPTIMIZATION SECTION --> 
<state name="power_optimized" starting="yes" > 
 <minimize combination="linear"> 
  <metric name=“MC_avg_power" coef="1.0"/> 
 </minimize> 
 <subject to=“MC_responseTime” metric_name="MC_responseTime" priority="1" /> 
</state> 
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AutoTuning and Adaptivity appRoach for 

Energy efficient eXascale HPC systems 

Scalability measurement of the simulation code instrumented by the DSL 

No manual code changes are required. Performance of the code under different execution conditions is measured au-
tomatically by combination of several LARA aspects. The conditions are defined by several parameters: 

 Number of OpenMP threads 

 Thread scheduling strategy (compact, scatter) 

 Cache usage strategy 

Scalability on OpenMP threads 
Single compute node, 2 x Intel® Xeon E5-2680v3 @ 2.5GHz, 12cores 

The main goal of the ANTAREX project is to provide a breakthrough approach to express by a Domain Specific Language 

the application self-adaptivity and to runtime manage and autotune applications for green and heterogeneous High 

Performance Computing (HPC) systems up to the Exascale level.  

 

 Dynamic self-monitoring and self-adaptivity or «autotuning» HPC applications with respect to changing work-

loads, operating conditions and computing resources 

 Programming models and languages to express self-adaptivity and extra-functional properties 

 Introducing a separation of concerns between extra-functional strategies (self-adaptivity, parallelisation, 

energy/thermal management) and application functionality by the design of a new aspect-oriented Do-

main Specific Language 
 Exploiting heterogeneous computing resources in Green HPC platforms by runtime resource and power manage-

ment 

ANTAREX Project Goals 

The domain specific language (DSL) and toolflow approach proposed in the ANTAREX project can pro-

vide the mechanisms needed for addressing properly the problems previously described. The DSL be-

ing developed is based on the LARA DSL and allows to specify strategies for code instrumentation and 

code transformations, including the required code adaptation for dynamic autotuning. 

Integration of mechanisms and strategies to on-line adapt the application behaviour and the platform con-

figuration with respect to changing workloads, operating conditions and computing resources.  

 Searching the best combination of the 

software knobs impacting the given met-

rics (for example execution time, energy 

consumption, etc.) 

 Definition of the goals to drive the optimi-

zation of the execution environment (for 

example to comply with the target SLA) 

 

Thread scheduling strategy 
Intel® Xeon Phi 7210P @ 1.2 GHz, 61 cores 

Cache usage strategy 
Intel® Xeon Phi 7210P @ 1.2 GHz, 61 cores 

Apart from the instrumentation, the aspects 

can be used to define the optimization logic 

which would select the best environment pa-

rameters (knobs) according to selected metric 

(speedup, energy consumption, etc.).  

Library of different instrumentation strategies 

can be created, providing various useful anal-

yses of the code performance. The main ad-

vantage of this approach is separation of the 

strategies (including instrumentation and code 

transformations) from the actual source code. 

The strategies can be programmed as generic 

and applicable to wide range of different 

source codes.  

INSTRUMENTED SOURCE CODE 

for (int threads = 1; threads <= max_threads; threads += increment) { 
    omp_set_num_threads(threads); 
    std::vector<long> times(runs); 
    std::vector<int> results(runs); 
    for(int r = 0; r < runs; r++) { 
      auto startTime = std::chrono::high_resolution_clock::now(); 

results[r] = RunMonteCarloAll(segments, samples)[0];
      times[r] = std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::high_resolution_clock::now() - startTime).count(); 
    } 
    int sum = 0; 
    for (int r = 0; r < runs; ++r) { 
      sum += times[r]; 
    } 
    float average = (sum/runs); 
 } 
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 AUTOTUNING 

Toolset workflow 
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