
A MATLAB Subset to C Compiler Targeting Embedded

Systems

João Bispo, and João M. P. Cardoso

Departamento de Engenharia Informática, Faculdade de Engenharia (FEUP),
Universidade do Porto, Porto, Portugal

INESC-TEC, Porto Portugal
{jbispo, jmpc}@fe.up.pt

ABSTRACT

This paper describes MATISSE, a compiler able to translate a MATLAB subset to C targeting em-
bedded systems. MATISSE uses LARA, an aspect-oriented programming language, to specify addi-
tional information and transformations to the input MATLAB code, e.g., insertion of code for initiali-
zation of variables, and specification of types and shapes of variables. The compiler is being devel-
oped bearing in mind flexibility, multitarget and multitoolchain support, allowing for the generation
of several implementations in C from the same reference code in MATLAB. In this paper we also
present a number of techniques being employed in MATLAB to C compilation, such as element-wise
mapping operations, matrix views, weak types, and intrinsics. We validate these techniques using
MATISSE and a set of representative benchmarks. More specifically, we evaluate the compiler with
a set of 31 benchmarks using an embedded system board and a desktop computer. The results show
speedups up to 1.8 by employing information provided by LARA aspects, when compared with C
code generated without additional user information. When compared with the execution time of the
original code running on MATLAB, the execution time of the generated C code achieved a geometric
mean speedup of 13.

KEYWORDS: MATLAB; C Code Generation, Source-to-Source Compilers; Aspect-Oriented
Programming; LARA; Embedded Systems.

1. INTRODUCTION

MATLAB [1] is a matrix-oriented, high-level, dynamic programming language and
interactive numerical computing environment. It is a de facto standard in many do-
mains of engineering and science, including embedded systems. It is ubiquitously
used by engineers and scientists to quickly develop and evaluate their models and
solutions.

In most embedded system settings, however, the use of a MATLAB runtime is not
feasible, either because it is not available, or due to performance and/or resource
constraints. To address this potential shortcoming, a typical solution relies on the
development of an implementation in programming languages such as C/C++, and
thus statically compiled to the target, once the base solution has been validated using
MATLAB. This implementation must then in turn be validated against the output of
the MATLAB code resulting in a lengthy and error prone process that further com-
plicates the overall application development cycle and cost. The existence of two
codes - the original MATLAB code and the C/C++ code - exacerbates maintenance
costs, and hampers programmer’s productivity.

Another solution is to automatically translate the MATLAB code to the target pro-
gramming language as provided, e.g., by the MATLAB Coder [2], which translates
MATLAB to C code. However, such a solution lacks low-level support to control
and guide the code translation process. The code generation is typically based on
directives (GUI based in the case of the MATLAB Coder) addressing types, shapes,
and target. When dealing with the myriad of target architectures and toolchains in
embedded systems, this approach presents a low level of flexibility. For instance, the
style of the C code generator might need to be tuned to the toolchain as is the case

when targeting hardware via C to hardware compilers (e.g., Xilinx Vivado HLS,
Calypto Catapult-C). A MATLAB compiler framework aware of both the target
computing platform and the toolchain when generating C code can be very im-
portant during the development process as it contributes to increase productivity and
to significantly reduce maintenance costs.

Our approach relies on a compiler, MATISSE [3][4], which generates C code from
MATLAB code. MATISSE also supports generation of highly customized C code
by employing user-provided hints. To achieve this, the compiler explores the use of
Aspect-Oriented Programming (AOP) [5] concepts, using the LARA language
[6][7][8] as a vehicle to convey information to the compiler, such as types and
shapes, and to specify compiler and monitoring actions. The compiler uses user-
provided information to complement its own analysis and to derive more specialized
implementations. MATISSE is being developed as a modular and flexible compiler
framework, which includes custom Intermediate Representations (IRs) for
MATLAB and C, keeping in mind the generation of C code from a higher-level pro-
gramming language. In particular, the IR representing the output C code (C-IR) sup-
ports matrix types natively, and can be easily extended to support additional types
and language constructs. The end result is a synergy between compiler analysis and
the user allowing the compiler to generate very high quality code from MATLAB.
Furthermore, it allows the generation of multiple C code versions from the same
MATLAB source, a key capability when targeting different embedded systems, plat-
forms, and/or toolchains. MATISSE also addresses other embedded systems con-
cerns, e.g. generation of C code that only uses static memory allocation, when tar-
geting C-to-hardware tools.

This paper mainly focuses on the following aspects of the MATISSE [9] compiler:
 It describes the overall architecture of MATISSE. The compiler is developed in

Java exhibiting an extremely modular software architecture that can be easily
augmented with specific transformations and code generation steps, thus facili-
tating compiler development.

 It describes the aggressive application of several techniques, such as weak-types,
intrinsics, and views with pointers.

 It describes the use of LARA to complement the compiler analyses for types and
shapes of array variables in MATLAB programs.

 It presents experimental results of C code generation from MATLAB examples,
guided by LARA specifications with different arithmetic precision contexts and
specific array shapes.

 It evaluates the compiler with 31 MATLAB benchmarks and performance exe-
cution measurements using an embedded system board and a desktop computer.
The performance results are very promising as the generated C codes are com-
petitive with existing MATLAB-to-C solutions.

The remainder of this paper is organized as follows. Section 2 briefly describes the
MATLAB programming language and the main features that make it very useful and
possibly also make the MATLAB to C translation difficult. Section 3 presents the
MATISSE compiler and its architecture, with particular emphasis on the techniques
used internally. Section 4 describes the main transformations and optimizations ap-
plied during the MATLAB-to-C translation. Section 5 shows the experimental re-
sults, Section 6 presents the related work and finally, Section 7 concludes the paper.

2. ABOUT MATLAB

MATLAB [1] is an interpreted, dynamic programming language built around the
matrix data type. It has been adopted in many engineering fields, such as in control
systems, image and signal processing, and simulation. The popularity of the matrix-
oriented programming model is reflected in the similar languages proposed, such as
Octave [10] and SciLab [11].

Like most interpreted languages MATLAB does not require variable declarations
or type definitions at compile time. The default numeric representation is the IEEE-
754 floating-point format with double precision. Other supported numeric data types
include integers (with 8, 16, 32 and 64 bits), single precision floating-point numbers,
and other numeric representations by using specific toolboxes, which enable the
assignment of specific data types and operation properties (e.g., overflow mode) to
MATLAB variables. Useful features of MATLAB include operator overloading,
function polymorphism, and dynamic type specialization. Matrices are the main data
structure, but it also supports additional data types such as arrays of heterogeneous
elements (known as cells), structures, strings, booleans, and function-handlers.
MATLAB allows developers to specify matrix operations in very compact code
when compared to the needed code when using the C programming language.

A MATLAB program comprises functions (known as M-files) and scripts. Func-
tions have a name, parameters, and may have zero or more return variables. Func-
tions can be called without passing all the arguments. All function arguments are
passed by value. To save memory, MATLAB execution environments pass by value
only those arguments modified by a function and by reference all the others. Scripts
correspond to files with MATLAB code and without specifying input/outputs.
Scripts can be also called in other scripts and in functions.

A characteristic of MATLAB is that a particular name (identifier) may refer to a
variable or to a script or a function. This is extended to matrix accesses and function
calling, which share the same syntax. E.g., in a(3), a can be either a variable or a
function. Additionally, an identifier can be redefined to be a variable or a function at
virtually any point in the code. Due to this flexibility, MATLAB postpones name
resolution of identifiers to runtime.

It is common in MATLAB to use indexing expressions to access matrix elements,
ranges of matrix elements, and sections of matrices. Indexing can be numerical or
logical and is an important way to manipulate matrices in MATLAB.

These features are useful for developers, but represent a challenge for multi-target
static compilation. They require advanced static analysis (such as type and shape
inference) and the possibility to use complementary information provided by devel-
opers and/or domain experts, in order to make less conservative decisions. This re-
search aims to translate MATLAB code to C code in a way that enables architecture-
specific optimizations, and minimizes the runtime overheads (e.g., type inference)
associated with MATLAB.

3. THE MATISSE COMPILER

MATISSE is a MATLAB compiler framework being developed in Java and leverag-
ing user knowledge. MATISSE consists of a MATLAB-to-C compiler targeting
embedded systems, and a LARA-controlled MATLAB weaver which allows trans-
formations over MATLAB code and communication of user information using spec-
ifications in LARA [6][8]. LARA is a domain-specific language inspired by both

AOP concepts [12] and JavaScript semantics and constructs. LARA uses a mix of
imperative and declarative semantics to allow developers to specify strategies for
actions over application source code and/or compiler IRs (e.g., instrument code, ex-
tract information, explore transformations, apply compiler optimizations). Although
LARA aspects (and the language itself) are kept as much agnostic as possible to the
language they are applied to, they require a weaver for communicating with the tar-
get language compiler.

MATISSE can be used as a source-to-source code transformation and instrumenta-
tion tool (e.g., one can use LARA to insert and transform arbitrary MATLAB code)
allowing for quick and reliable generation of reference C implementations, a key
step in the development of many embedded applications. All LARA aspects are exe-
cuted statically, as a compilation step, and include actions such as insertion of code,
definitions of types and shapes, and code specialization based on default values. The
knowledge regarding data types and shapes, provided by LARA aspects, allows
MATISSE to generate highly customized C code that conforms to the requirements
of a specific target.

Figure 1 presents the overall flow of MATISSE. The input MATLAB files are
translated to an abstract syntax tree (AST) based MATLAB IR. This IR is then input
to MWeaver, which uses LARA aspects to modify and add information to the IR.
MATISSE currently supports two back-ends, one for MATLAB and another one for
C (including an experimental option to output ANSI C). The C code generation
back-end has a Transformations stage that applies optimizations such as element-
wise mapping operations and matrix views.

C Language
Specification

C Language
SpecificationMATLAB Code MATLAB

Front-End

MATLAB IR

MWeaver

C Language
Specification

C Language
SpecificationLARA Aspects

MATLAB IR + Information

C-oriented MATLAB IR

C Code
Generator

C Language
Specification

C Language
SpecificationC Code

MATLAB
Generator

C Language
Specification

C Language
SpecificationMATLAB Code

Transformations
(C and Target-Dependent)

Figure 1. Overview of the MATISSE compiler framework (note that the framework is being en-
hanced with an OpenCL generation flow not visible in this block diagram).

The MATLAB back-end allows the generation of MATLAB code for validation,
testing, monitoring, and specialization. With the C back-end, LARA aspects enable
MATISSE to generate customized code for a particular target, to have fine-grained
control over the generation of C code, and also to enable the generation of different
implementations from the same original MATLAB code.

The knowledge regarding data types and shapes, provided by LARA aspects, al-
lows MATISSE to generate both more efficient C code and stylized C code that con-
forms to the input requirements of specific tools of a given toolchain. A common
example includes the restructuring of source code and the use of statically declared
array variables to be compliant with the requirements of high-level synthesis tools
(e.g., Catapult C and Vivado HLS).

3.1 Internal Representation

Given the differences between MATLAB and C, MATISSE uses a C specific AST-
based IR to represent the C code (C-IR). This allows the compiler to separate con-
cerns related to C generation (e.g., include files, variable declarations) that are not
considered in the MATLAB IR, and simplifies the generation of C code. Having an
IR for C generation allows the MATLAB IR to remain clean and independent of the
specificities of the code generation to be applied.

To support translation of MATLAB code to C code, MATISSE needs to be able to
specify the constraints of C. For instance, to support the statically typed notion of C,
MATISSE uses the concept of FunctionInstances and InstanceProviders to generate
specialized code for each function for different configurations, contexts, and input
types. A configuration refers to the options available to the MATISSE compiler
(e.g., enable/disable dynamic memory allocation), and a context is about information
of the function call in a specific place in the code (e.g., function is called with a spe-
cific number of parameters; the expected output type is known). A FunctionInstance
represents a particular implementation of a function. Each C function has a 1-to-1
relationship to a FunctionInstance, but a MATLAB function may have a 1-to-many
relationship to FunctionInstances. An InstanceProvider creates FunctionInstances,
according to the input types of the function, configurations and context. Each
MATLAB function has a corresponding InstanceProvider that is able to create all
possible FunctionInstances for that function.

MATISSE uses the VariableType to represent all the information needed about a
data type (e.g., code needed to declare the variable, how to convert to another type,
how to perform an addition between variables of this type). Figure 2 shows a subset
of the hierarchy that starts with the VariableType interface. Scalar represents a sin-
gle value, and Matrix represents a multi-dimensional array of elements of type Sca-
lar. These two classes add contract methods that provide information specific to
these types, such as number of bits, maximum and minimum values or
signed/unsigned, for Scalar, or matrix shape and element type, for Matrix. CNative
represents the native types of C (e.g., int, float, in the case of CType, and, e.g.,
int32_t, uint8_t in the case of StdInt). VariableType allows a seamless integration of
several types in a modular way. For instance, by implementing the interfaces con-
tract, MATISSE is able to automatically generate code which mixes uses of Stat-
icMatrix and DynamicMatrix, two different matrix implementations.

VariableType

Scalar Matrix

CNative StaticMatrix DynamicMatrix

CType StdInt

Void

Interfaces Implementation

Figure 2. Subset of the VariableType hierarchy in MATISSE

3.2 Weak types

In our initial experiments, we observed that the performance of the generated code
could be significantly improved by reducing the number of cast operations. For in-
stance, consider the MATLAB expressions in Figure 3(a) and suppose that variable
s has been previously inferred as a single. When inferring the type of constant c we
need some kind of default type. In the case of MATLAB, it uses double as the type
of all numeric constants (MATISSE distinguishes between integer and real con-
stants, and uses user-defined defaults). According to MATISSE semantics, the result
of an addition between a single and a double should return a double. Considering the
type of c is a double, we obtain the code r = c + (double) s; where one cast is
introduced. Note that if we generate the C code c + s, it still has an implicit cast
operation introduced by the compiler.

In the previous case, it will be beneficial if the constant has the same type of s.
According to the type of s, the compiler should generate the code in Figure 3(b) or
in Figure 3(c). We introduce the concept of weak type to refer to types that can be
changed by type inference to lower or higher precision according to the needs. In
Figure 3(a), by marking the type of the constant c as weak double, the type inference
system determines it is better to be a single (Figure 3(c)) or a double (Figure 3(b)),
and back-propagate the type. In our current approach, the compiler coalesces the
different types that might be inferred for each variable into a single type (e.g., single
and weak double into single). Weak types are being used to help the compiler do
type coalescing. Generally, the types of constants in MATISSE are considered to be
weak-types (this includes the types of functions that return constants, such as zeros
or ones).

c = 1.5;
r = c + s;

double c, r, s;

c = 1.5;
r = c + s;

single c, r, s;

c = 1.5f;
r = c + s;

(a) (b) (c)

Figure 3. Example to explain weak types: (a) MATLAB code; (b) C code resultant when s is inferred
as a double; (c) C code resultant when s is inferred as a single.

However, weak-types should not be always ignored. For instance, consider varia-
ble s was inferred as an integer. If c, a constant of a floating-point type, is ignored,
variable r will be inferred as an integer, which probably is not what is intended. Alt-
hough a weak type does not provide guarantees about the type, it does have some
information about what is expected in terms of the type, and when doing type infer-
ence that information is taken into account. For instance, in this case the type of c
has the property Real.

To choose which types should be considered for type inference for each expres-
sion, MATISSE uses the algorithm presented in Figure 4. It starts with a list contain-
ing all the types of the expression (e.g., the input types of the addition, plus possibly
a suggestion for the output type) and then splits the types into weak types and non-
weak types. If one of the lists is empty, then all types are considered for type-
inference. Otherwise, the algorithm collects the properties for all non-weak types.
For each weak type, it then checks if it has properties that should be considered in
comparison with the properties of the non-weak types. If the answer is affirmative,
the weak type is used for type inference. MATISSE currently uses two properties,
Real and DynamicallyAllocated. The same type can have more than one property,
and the type inference is flexible enough to deal with additional properties.

// Input: list of types from an expression
List exprTypes
// Output: list of types to be used in type inference for the expression
List inferenceTypes

// Select non-weak types
List nonWeakTypes = exprTypes.NonWeakTypes
// Select weak types
List weakTypes = exprTypes.WeakTypes

// When there is no mix of weak and non-weak
if nonWeakTypes.isEmpty || weakTypes.isEmpty

 inferenceTypes.add(exprTypes)
 return
endif

// Properties of non-weak types
Map nonWeakPr = getProp(nonWeakTypes)

// All non-weak types are used in inference
inferenceTypes.add(nonWeakTypes)

for each weakType in weakTypes
 Map weakTypePr = getProp(weakType)
 if considerWeakType(weakTypePr, nonWeakPr)
 inferenceTypes.add(weakType)
 endif
endfor

Figure 4. Algorithm to choose which types to use in type inference.

3.3 Type Inference

The type inference mechanism in MATISSE uses a simple dataflow analysis [13],
where type information is derived by processing each MATLAB statement, and is
done bottom-up along the AST. This type inference is complemented with infor-
mation provided by LARA aspects (e.g., it is possible to define the type to be used
as the default real type), which is passed in a top-down manner, and we introduce
several techniques to allow a less conservative inference and to be able to generate
more efficient code.

There are two general situations where type-inference is applied in MATISSE: (1)
in assignments, and (2) in function calls. In assignments, the variables on the left
hand side are bound to the type inferred in the right hand side, unless the type of the
variable has been explicitly defined using LARA.

For function calls, we took a more decentralized approach, and allow each func-
tion to define the types of its returns. When a FunctionInstance is created, it uses
information, such as the input types of the function, to infer its output types. We
show below three examples of how type-inference can change between functions:
 General scalar operations: Most scalar operations use the same inference rule in

MATISSE. They consider the input types, and a possible output type if availa-
ble, and determine the type with maximum rank (i.e., the type able to represent
all the others with minimum precision loss). If the input types have information
about the values of the variables at that point, and if constant propagation is pos-
sible, the result of the operation is added to the output type.

 Scalar division: Scalar division is a special case, where the output type some-
times needs to be of higher rank than the inputs (e.g., a division between integers
can have a float as output). If all inputs are integers, the function will conserva-
tively use a real as output, unless there is information about the input values and
it can perform constant propagation (in this case it adapts the output to the re-
sult).

 Matrix creation: Certain functions, such as the ones that create matrices (e.g.,
zeros, ones), allow the type of the output to be explicitly passed as an input. Oth-
erwise, it needs to use a default type, which in MATLAB is double (i.e., float-
ing-point with double precision). In order to be able to specialize cases such as
these, MATISSE uses information about the output type of the assignment, if
available.

As previously mentioned, type-inference in MATISSE starts at the AST leafs. As
MATISSE allows users to define the type of any variable in the code, doing type-
inference while using this information poses additional challenges. Consider the
example in Figure 5(a). If the user defines the type of variable a as single, this in-
formation is passed to the elements in the right hand. When inferring the type of the
expression 2 + sin(b), the inference engine knows that the output should be a
single, and infers that the constant and the value returned by the function should be
represented as single (i.e., 2.0f + sinf(b)) instead of double (i.e., 2.0 +

sin(b)). This means that MATISSE can avoid casts that can become very costly in
tight loops. However, it is not always desirable to pass the information about the
output type. Consider Figure 5(b), where a is defined as an int. If we propagate the
int type to all elements, we will generate C code that performs an integer division
(i.e., a = 10 * (3 / 2)) and lose a considerable amount of precision (the result
will be 10, instead of 15). Instead, MATISSE can set arbitrary rules, per function,
for the expected types for its inputs and outputs, instead of always “blindly” propa-
gating the output type. In this case, the generated code by MATISSE is a = (int)
(10.0 * (3.0 / 2.0)), which gives the correct result.

a = 2 + sin(b) a = 10 * (3 / 2)

(a) (b)

Figure 5. MATLAB examples to explain type-inference using top-down information.

3.4 MATISSE Intrinsics

When generating code for a given core functionality set, such as some MATLAB
built-in and toolbox functions, MATISSE usually uses templates written in C, or
more commonly, MATLAB code from which the C-IR is automatically generated.
However, sometimes it is not possible to write code that will be translated efficiently
to C using pure MATLAB.

For instance, consider we want to initialize a matrix, using the size of another ma-
trix. When writing MATLAB we will possibly use the code in Figure 6(a). Also,
due to compiler analysis, consider that we know that all elements of the matrix will
be written before they are read (e.g., the output matrix of an element-wise opera-
tion). In this case, when creating the matrix in C we want to just allocate the
memory, and avoid the initialization of the matrix values (e.g., to zero). Assuming
we are using dynamically allocated matrices, the MATLAB code in Figure 6(a) can
be naively translated to the C code in Figure 6(b). Note that it calls a function that
initializes the values to zero, even if we know that in this case we do not need such
initialization. Furthermore, there is a call to the function size, which creates the
matrix temp_m0. This matrix could be avoided, since we can directly use the size of
the matrix that is given as input.

To enable the generation of more efficient code from MATLAB templates, MA-
TISSE provides intrinsics that can be called from MATLAB code. Intrinsics are
MATLAB functions MATISSE understands and usually translate to more low-level
C code. They are intended to be used internally by MATISSE, in templates, and we
do not expect users to modify their MATLAB code to insert such functions. For
instance, Figure 7(a) uses the intrinsic matisse_new_array_from_matrix instead
of the function zeros to initialize a matrix with size information from another ma-
trix, and without initialization of the matrix values (Figure 7(b)).

C = zeros(size(A)); zeros_double(*size_d(A, &temp_m0), C);

(a) (b)

Figure 6. Code generation for zeros function: (a) original MATLAB code using function zeros; (b) C
code generated.

C = matisse_new_array_from_matrix(A);
new_array(A->shape,
 A->dims, C);

(a) (b)

Figure 7. Using MATISSE intrinsics: (a) MATLAB code representing initialization of a matrix with
size information from another matrix, and without values initialization (intrinsic ma-

tisse_new_array_from matrix); (b) C code generated when using the MATISSE intrinsic.

Examples of other intrinsics are the matisse_change_shape, which changes the
shape of a matrix directly, instead of creating a new matrix with the new shape; ma-
tisse_to_real, which casts an element to a default real type defined in MATISSE
configuration; or matisse_idivide, which performs integer division (see Section 4).
In addition, there are intrinsics for debugging and monitoring. For instance, ma-
tisse_probe accepts an arbitrary MATLAB expression and statically reports the out-
put type inferred for that expression.

Although the main purpose of MATISSE intrinsics is to be able to generate the C
code we need from internal MATLAB templates, we can also use LARA strategies
to insert calls to intrinsics in user MATLAB code, before generating the C code (i.e.,
it is possible to use them directly in any M-file, for instance during transformations

with LARA aspects). Note that we consider the use of intrinsics in MATLAB user
code as an advanced technique to get further customization, and their use is not re-
quired to generate efficient C code.

Finally, MATISSE provides a compatibility library with MATLAB implementa-
tions of the intrinsics, so that MATLAB code which uses intrinsics can still run in a
MATLAB environment (for instance, to test the outputs).

4. MATISSE TECHNIQUES

In this section we present some of the techniques MATISSE applies to generate cus-
tomized C code.

4.1 LARA Aspects for MATLAB transformations

MATISSE includes a MATLAB weaver which allows transformations over
MATLAB code and can be used as a source-to-source code transformation and in-
strumentation tool. The weaving stage of the compiler performs LARA specified
actions such as insertion of code, definitions of types and shapes, code specialization
based on default values, and code transformations.

For instance, consider the code for the benchmark closure, in Figure 8(a), where
the input B is always a square matrix with a power of two side size. Under these
conditions, the two divisions in the code (ii = N/2 and ii = ii/2) will always be
integer divisions, but MATISSE will automatically use a real division, to avoid pos-
sible loss of precision. One way to force an integer division is to use the MATLAB
function idivide instead of the division operator. As idivide uses MATLAB integer
types, we have to introduce a cast and obtain the code in Figure 8(b). However, this
has several caveats: first, the code is now a bit more complex and might add up to
the complexity if several transformations are needed; second, and more importantly,
we are now forcing the program to always do an integer division. In the context of
MATISSE, we propose to maintain the original MATLAB code as generic as possi-
ble, and any target-specific information be conveyed separately, in an aspect, and
woven with the source code during a compilation step.

Figure 9(a) shows a LARA aspect which replaces the divisions in the original clo-
sure code with a call to the function matisse_idivide (Figure 9(b)), a MATISSE in-
trinsic (see Section 3.4) which indicates a division that can be performed as an inte-
ger division. The code calls a generic library aspect, shown in Figure 9(c), which
can be used to replace arbitrary operators with a function, depending on their oper-
ands. This way, we avoid having two versions of the same reference code in order to
pass information to MATISSE that, e.g., those divisions can be done as integer divi-
sions.

4.2 Matrix Views

A view is a section of a matrix, which is accessed using the colon operator (e.g.,
A(N:M)). Such accesses are very common in MATLAB, and the most straightfor-
ward way to implement them is to create a temporary matrix with a copy of the val-
ues in the range specified by the operator. If the range has a step of 1, we can avoid
copying the values and just pass a pointer to the beginning of the range (i.e., a ma-
trix view).

% B is a square matrix whose side size is always a power of two
function [B_out] = closure(B)

N = size(B, 1);
...

ii = N/2; % This division will always be an integer division
while ii >= 1,
 B = B*B;
 ii = ii/2; % This division also
end;

B_out = B > 0;

...

(a)

ii = double(idivide(N, int32(2)));

(b)

Figure 8. Benchmark closure: (a) part of the original MATLAB code; (b) code of one of the divi-
sions, when using the MATLAB integer division.

aspectdef closure_idivide
 select function{"closure"}.operator end
 apply
 call replace_operator($operator, "/", "N", "2", "matisse_idivide");
 call replace_operator($operator, "/", "ii", "2", "matisse_idivide");
 end
end

(a)

...
ii = matisse_idivide(N,2);
while ii >= 1,
 B = B*B;
 ii = matisse_idivide(ii, 2);
end;

...

(b)

aspectdef replace_operator
 input $operator, operatorSymbol, lOperand, rOperand, newFunction end
 check $operator.symbol == operatorSymbol end

 var leftValue = $operator.operands[0];
 if(leftValue != lOperand) {return;}

 var rightValue = $operator.operands[1];
 if(rightValue != rOperand) {return;}

 $operator.insert replace
 %{[[newFunction]]([[leftValue]], [[rightValue]])}%;
end

(c)

Figure 9. LARA and intrinsics: (a) LARA code that replaces division operators with intrinsic ma-
tisse_idivide; (b) code after weaving; (c) LARA code for replacing operators.

However, it is not always possible to use matrix views. One such example is when
the matrix is modified before the view is read. A more subtle case is when the poten-
tial view is on the right hand of an assignment, over a local variable, and the recipi-
ent is an output of the function (e.g., output_var = local_var(N:M)). The prob-
lem with this case is that when using a view with pointers, output_var will point to
the values in local_var. After the function ends, local_var is freed and out-

put_var will be a dangling pointer. Although currently MATISSE detects this case
and uses a view by copy, we are considering the use of a reference-counting mecha-
nism to avoid copies in such cases.

4.3 Attributes

LARA aspects can be used to set attributes to elements in the code. For instance,
MATISSE can assign to a variable the attribute “constant”, which refers to variables
whose values do not change during their lifetime, after the initial assignment. Con-
sider the code s = z(a:b). In the general case, we should use a view by copy (see
Section 4.2) to obtain the range values, and then copy the contents of the view to
matrix s. However, if we know both z and s are constant in the scope they are used,
we can avoid both copies by 1) using a pointer view instead of a copy view, and 2)
making variable s itself a view of z.

Although this information could possibly be extracted using source-code analysis,
currently MATISSE relies exclusively on user-provided information to indicate the
constant variables (see Figure 10). Note that for some cases, it might not be possible
to use automatic analysis, and user information may still be needed.

select var{"z", "s"} end
apply
 $var.def constant = true;
end

Figure 10. LARA code for defining variables z and s as constant.

4.4 Compile-time Copy-on-Write

Even though MATLAB uses pass-by-copy semantics, for efficiency reasons MA-
TISSE passes matrix pointers instead of matrix copies to functions). To avoid losing
the pass-by-copy semantics, MATISSE does a preventive copy when an input of a
function is altered inside the function.

First, MATISSE checks if any of the inputs appears on the left hand side of an as-
signment. If an input is found, then it checks if it is a reference type, such as a ma-
trix, or a pointer to a scalar. After collecting all the inputs that can be changed dur-
ing the execution of the function, it modifies the code as shown in Figure 11.

This transformation is conservative – the input variables might be written only on
certain control-flow paths that are not always executed. Possible MATISSE exten-
sions may include code for a runtime check every time an affected variable is writ-
ten instead of doing always a preventive copy.

function out_var = f(input_var)
 input_var(3) = 0;
 out_var = input_var(2:end);
end

function out_var = f(input_var_original)
 input_var = input_var_original;
 input_var(3) = 0;
 out_var = input_var(2:end);
end

(a) (b)

Figure 11. Copy-on-Write transformation example: (a) original MATLAB code; (b) transformed
MATLAB code.

4.5 Nargin and Nargout Removal

MATLAB allows the use of two system variables (nargin and nargout) that store
the number of input/output arguments for a given function call. Figure 12 shows a
common idiom in MATLAB, used to support a variable number of function inputs
with default values. The nargin system variable is available at runtime and returns
the number of input arguments passed in the call to the currently executing function.
The MATISSE approach avoids the generation of generic C code to support a dis-
tinct number of input/outputs used in distinct calls. Instead, each call to a given
function using a different number of input/outputs implies a specialized version of
the function.

Our approach to this kind of concerns considers:
 Migration of these concerns to LARA aspects, in the case where we want to

maintain a clean MATLAB code version;

 Generation of multiple versions of the function according to the number of in-
put/output arguments of the function call.

MATISSE converts MATLAB functions when there is a call in the code to a spe-
cific function. This means that when converting all MATLAB functions but the
topmost, MATISSE knows exactly with how many arguments the function being
converted was called, and can specialize the code of the function according to the
specific number of arguments.

function out_var = f(var1, var2, var3)

 if(nargin < 3)
 var3 = 0;
 end

…

Figure 12. MATLAB idiom for variable input arguments

4.6 Transforming Element-Wise Mapping Operations

Certain MATLAB operators and functions (e.g., addition, subtraction, square root)
perform element-wise mapping operations. These operations calculate each output
matrix element from one input matrix element at the same position (or from multiple
elements from distinct matrices all at the same position).

In the presence of chained-operations, allocating a new matrix for each operation
is inefficient. Thus, MATISSE rewrites chains of function calls consisting of ele-
ment-wise mapping operations to for loops. Figure 13 shows an example where the
original MATLAB code (see Figure 13(a)) includes a chain of element-wise opera-
tions. A naive implementation uses the chain of function calls shown in Figure 13(b)
and Figure 13(d), when using static memory allocation and dynamic memory alloca-
tion, respectively. With the element-wise mapping transformation, MATISSE is able
to obtain the codes in Figure 13(c) and Figure 13(e). These versions are advanta-
geous, since the for loop is more efficient to implement in C, prevents the use of
temporary variables, and exposes data-parallelism.

Note that some functions are element-wise mapping operations depending on the
types of input. For instance, the multiplication operator (*) is element-wise if one of
the operands is a scalar, but not if both operands are matrices.

R = sqrt((A .* A) + (B .* B));

(a)

sqrt_e((add_e(((mult_e(A, A, temp_m0))), ((mult_e(B, B, temp_m1))), temp_m2)), R);

(b)

for(i = 0; i < numel_A; i++){
 R[i] = sqrt(A[i]*A[i] + B[i]*B[i]);
}

(c)

sqrt_e((add_e(((mult_e(A, A, &temp_m0))),((mult_e(B, B, &temp_m1))), &temp_m2)), R);

(d)

new_array_helper_f(A->shape, A->dims, R);
for(i = 0; i < A->length; i++){
 (*R)->data[i] = sqrt(A->data[i]*A->data[i] + B->data[i]*B->data[i]);
}

 (e)

Figure 13. Element-wise example: (a) a MATLAB statement of element-wise operations; (b) the
equivalent C with static allocation when element-wise transformation is disabled and (c) enabled; (d)
the equivalent C with dynamic allocation when element-wise transformation is disabled; (e) enabled.

4.7 Algebraic Analysis for Range Determination

Figure 14 shows a segment of code which uses arithmetic expressions to determine a
range of values for matrix A. In order to be able to generate code using static
memory allocation, we need to know the size of all matrices at compile time, which
in the case of matrix B, implies knowing the number of elements in the range for
matrix A.

The number of elements in a range of values is given by the equation end – start +
1, which for the range in matrix A corresponds to the expression (N×M×i) - (N×M×(i-
1) + 1) + 1. MATISSE generates the expression and then applies an algebraic solver
(it currently uses the library Symja [14]) to calculate the number of elements in the
range (N×M, in this case). If N and M are statically known, MATISSE then substi-
tutes the expressions to constants, and is able to generate a static version of the code.

for i=1:L
 B(N*M*(i-1)+1:N*M*i) = fft2d(A(N*M*(i-1)+1:N*M*i));
end

Figure 14. Example of code that uses expressions to determine ranges.

4.8 Using third Party Libraries

Using third party libraries is important for generating high-performance code. One
example is the use of BLAS [15] for matrix multiplication operations. It is also im-
portant to control when libraries and which ones should be used or not. For instance,
for small matrix sizes the use of BLAS can be less efficient than a simple matrix
multiplication implementation. MATISSE addresses these aspects using LARA
strategies and including support to interface to third-party libraries (at the moment
the support allows the use of BLAS). Further improvements will focus on the speci-
fication of library interfaces to make MATISSE more flexible.

Currently, in the case of BLAS, the use of the library is controlled by a threshold
over the size of the matrices used in a function call (which can be defined by the
user). In the context of this paper, we do not intend to provide a scheme to find
when a library should be used in a general case.

5. EXPERIMENTAL RESULTS

We present here an evaluation of the MATISSE compiler using a set of 31
MATLAB programs1 obtained from several sources. Table 1 presents the bench-
marks we consider, along with the size of inputs.

We tried to avoid modifications to the original MATLAB code as much as possi-
ble. The necessary modifications included the removal of code not related to the
functionalities, such as code for time measurements (capacitor, closure) and renam-
ing output names (closure), the adaptation of the code for each feature not currently
supported by MATISSE, such as complex numbers (diffraction), and the inclusion
of pre-allocation of matrices (crnich, diffraction). Note that some of these modifica-
tions, such as pre-allocation of matrices, can be expressed by LARA aspects. Most
programs could be compiled without additional information from the user, e.g., in-
cluding LARA aspects to optimize the generated code. The performance of the mod-
ified MATLAB code remained similar to the achieved by the original MATLAB
code, with the exception of the code for diffraction, whose modifications resulted in
a speedup of 1.5 over the original MATLAB code. The results where compared
against the new, faster MATLAB version.

We consider here three platforms for our experiments:
 PC – a desktop PC with a 2.66 GHz Core 2 Quad processor, Windows 7 64-bit,

12 GB of RAM;

 ODROID – an ODROIDXU+E board, with an Exynos 5410 SoC with an 1.6
GHz ARM’s big.LITTLE configuration, 1 GB of RAM;

 BeagleBoard – a BeagleBoard-XM revB running Ubuntu 12.10 32-bit, with a 1
GHz ARM Cortex-A8 and 512 MB of RAM.

We used GNU gcc 4.8 on all platforms, MATLAB R2014a on the desktop, and
OpenBLAS v0.2.12 as the BLAS library. An online version of the MATISSE com-
piler is available [9].

Regarding the LARA aspects, they are executed statically, as a compilation stage,
and compilation time is dominated by C compilation (i.e., by gcc), the LARA com-
pilation and weaving represent a small fraction of the total compilation time. The
use of LARA aspects to transform the original MATLAB code was limited to the
insertion of the intrinsic matisse_idivide (as explain in Section 4.1) in the benchmark
closure, and performing loop interchange in the benchmarks capacitor, conv_2,
editdist and seidel.

Application speedups are calculated taking into account the total execution time of
the binaries obtained by compiling the final C application. Since some C source files
might contain some of the inputs (e.g., the source file with the main method), these
files are compiled separately from the rest of the code, to avoid optimizations such
as aggressive constant propagation from the C compiler.

1 The MATLAB source code, the LARA aspects and the inputs of the benchmarks (as well as other elements such as the C
code generated by MATISSE) can be found at http://specs.fe.up.pt/publications/spe2016.zip

Table 1. Benchmarks considered for results and corresponding input sizes.

Benchmark Input Sizes Benchmark Input Sizes

adapt [16] 100,000 fft2d_v2 [7] 256256

capacitor [16] 256512 finediff [16] 40964096

cfd3_v1 [7] 256256x3 fir_1d [7] 1,000,00032

cfd3_v2 [7] 2562563 gauss [16] 257513

closure [16] 4,096 vertices grid_iterate [7] 326416, 100

conv2 [7] 96, 11 hypotenuse 2 5121024

copy_vs_ptr 2 20482048 latnrm [7] 32,000; 8

crnich [16] 80004000 monte_carlo 3 200

diff [16] 611580 nbody1d [16] 4096 bodies

dilate [7] 20482048 nbody3d [16] 512 bodies

dirich [16] 20002000 rgb2yuv 2 1024600

dotprod [7] 51251210 rgb2yuv_v2 2 1024600

dotprod_v2 [7] 2562563 seidel [16] 257513

editdist [16] 4096 chars subband_2d [7] 204820482048

fdtd [16] 51251215 tridiagonal [16] 12000

fft2d [7] 256256

The C code used herein for evaluation is related to C code generated and produc-

ing similar results to the ones achieved by the original MATLAB code. For all re-
sults, we tested if the values given by the C code were within 0.1% of the original
values.

5.1 MATISSE vs Coder

We were unable to use the presented benchmarks to compare MATISSE with a
commercial tool such as Mathworks’ MATLAB Coder [2]. Our comparison is lim-
ited to the use of an averaging filter function4 available at the Mathworks’ website.
For this example, which uses only statically-allocated memory, the C code generated
by MATISSE was 2, 2.2 and 1.5 faster than the C code generated by Coder,
when running on the PC, ODROID, and BeagleBoard platforms, respectively.

The codes generated by Coder and MATISSE for this function are very similar.
The most noticeable difference is that in the main loop, Coder generates two calls to
the library function memcpy, while MATISSE generates only one call, being the
functionality of the second memcpy implemented in a for loop.

The memcpy function is an optimized C library function which usually is signifi-
cantly more efficient than using an equivalent for loop. However, the second call to
memcpy inserted by Coder is done over a 16-byte unaligned address (i.e.,
&buffer[1]), which can impact performance. We observed that the gcc compiler is
able to vectorize the for loop generated by MATISSE, by using instructions that
move two values in a single operation (e.g., movapd %xmm2,%xmm1 in the case of the
PC platform). These instructions can only be used over 16-byte aligned addresses.

2 Written by the authors
3 Based on an example by MathWorks (http://bit.ly/1Y9u1KO)
4 http://www.mathworks.com/help/coder/examples/averaging-filter.html (accessed on December 2015)

Additionally, the call to memcpy inserted by MATISSE is optional. It is possible to
disable library functions on a per-function basis through LARA aspects and generate
pure C implementations. This can be useful when targeting systems which do not
support such functions, as is the case when targeting hardware using C to hardware
compilers.

Although this single example cannot be used to make a strong comparison, it
shows some of the features of MATISSE: (a) the possibility to generate code with or
without calls to functions possibly not supported by the target toolchains (as the
ones not supported by the C to hardware compilers); (b) the generation of compiler-
friendly C code (important in this example to enable loop vectorization).

5.2 Results using LARA strategies

For each benchmark we consider three LARA strategies, according to the number of
defined types for variables: minimum, where all inputs are considered to be double
(in practice, this is accomplished by a single LARA statement setting the default real
type to double); inputs, where in addition to the definitions included in minimum, we
define the inputs as single or as integer types whenever possible (this strategy is sim-
ilar with what we can do with MATLAB Coder); and optimized, where we set the
default real type to single, and in addition to the types in inputs, we define any vari-
able type to obtain a program that uses single types and integer types whenever pos-
sible.

Using the strategy inputs, we achieved a geometric mean speedup of 1.04, 1.01
and 1.24 over the C code generated by the strategy minimum, for the PC,
ODROID, and BeagleBoard, respectively. The BeagleBoard is the case that benefit-
ted most from defining the input types, while for the other targets we saw virtually
no difference. This happens because the BeagleBoard is the system where there is a
greater difference in performance when using different types (e.g., integers, singles
and doubles).

The optimized strategy achieved further improvements of 1.35, 1.32 and 1.21
over the C code generated by the previous strategy inputs, for the same targets. Be-
sides the default real being set to single, the optimized strategy defines types for ad-
ditional variables in 12 benchmarks, being the maximum number of defined varia-
bles 6 (fft2d), and the minimum 1 (editdist). On average, the strategy defines 2.25
additional variables for each of the 12 benchmarks.

Figure 15 shows the individual speedups obtained for those 12 benchmarks, when
compared with the inputs strategy (we consider to be a fairer comparison than using
the strategy minimum). The source of the improvements are mostly from avoiding
doing casts (with significant cost when inside loops) with the optimized strategy.
The inputs strategy often infers certain types conservatively as doubles, including
the outputs, even if the inputs are defined as single.

The performance of editdist is significantly higher when running on the Beagle-
Board (3.6). This is due to the specialization that replaces uses of floating-point
data types with integers. The performance of integer operations on the BeagleBoard
is much higher than floating-point performance (in the other two targets the perfor-
mance is similar).

1.7
1.7

1.5

 -

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

 5.0

Sp
ee

d
u

p

Core2Quad Odroid BeagleBoard

Figure 15. Speedups when using the strategy optimized. The baseline execution refers to the code

generated using the strategy inputs.

5.3 MATLAB vs C Results

Figure 16 shows the speedups obtained by the C code generated with the optimized
strategy, when compared with MATLAB executions on the PC. The absolute execu-
tion times are presented in Table 2. They are averages over 5 measurements, the
variation in the majority of cases was 1% or lower, and was never higher than 3%.
For all cases, the execution time is at least the same as in MATLAB (e.g., closure)
or lower. On average, the C code generated by MATISSE has a speedup of 13 over
the execution of the original code in MATLAB.

Figure 17 compares the performance between C code generated by MATISSE and
C code generated by MEGHA [17] (see Table 3 for a detailed view of the values).
Although MEGHA focuses on generating CUDA-enabled code, it is also able to
generate efficient C code. We tried to replicate in MATISSE the experimental setup
used by Prasad et al. [17], by using input matrices with the same sizes, and adjusting
inputs in certain cases so that we could get approximate absolute MATLAB execu-
tion times for the same benchmarks. We were not able to obtain neither MEGHA
nor its generated C code, so we use here the published speedup values which com-
pare the performance of the C code generated by MEGHA with the execution of the
original MATLAB. We are aware that the hardware and the software versions used
in the experiments are different, and it is not possible to make a quantitative compar-
ison, even if the results are taken to a relative reference (the MATLAB execution).
Note that the C code currently generated by MATISSE does not target multicore
architectures, and one of the planned steps is to generate C code with OpenMP di-
rectives. Also, the more recent version of the MATLAB environment used in our
experiments might be more advanced and thus might achieve better performance
when running MATLAB code. In this case, the speedups achieved by the code gen-
erated by MATISSE would highlight even more the efficiency of MATISSE.

Experiments suggest that the performance obtained by MATISSE is comparable to
the performance of MEGHA for C code (8.1 and 5.6 of geometric mean for MA-
TISSE and MEGHA, respectively). The case where there was a greater difference
between MEGHA and MATISSE, when considering the biggest inputs, was editdist
(2.8 difference). We think this might have to do with editdist being the only exam-

ple that can be implemented using only integers, a case that MATISSE can optimize
aggressively using aspects.

Table 2. Execution time average of 5 measurements when running the MATLAB code and the C
code generated by MATISSE with optimize strategy, on the PC.

Benchmark

Time (s)

Benchmark

Time (s)

MATLAB
code

C code gen-
erated by
MATISSE

MATLAB
code

C code gener-
ated by

MATISSE

adapt 0.12 0.042 fft2d_v2 0.13 0.0066

capacitor 16.6 0.92 finediff 1.00 0.16

cfd3_v1 3.38 0.037 fir_1d 3.37 0.044

cfd3_v2 0.55 0.033 gauss 258E-07 9.23E-07

closure 44.3 43.4 grid_iterate 3.29 0.029

conv2 0.044 0.0049 hypotenuse 0.0052 0.0026

copy_vs_ptr 0.026 0.0053 latnrm 0.23 0.0010

crnich 9.4 1.59 monte_carlo 2.64 0.039

diff 0.23 0.045 nbody1d 19.7 5.64

dilate 26.7 2.97 nbody3d 42.8 10.7

dirich 59.6 7.16 rgb2yuv 0.072 0.022

dotprod 0.19 0.025 rgb2yuv_v2 4.62 0.052

dotprod_v2 0.00918 0.0015 Seidel 0.016 0.0014

editdist 37.8 0.22 subband_2d 0.036 0.026

fdtd 189 20.0 tridiagonal 38.4E-05 4.26E-05

fft2d 0.85 0.0066

2.8

17.9
16.7

1.0

9.1

4.9
5.9

5.1

9.08.3
7.5

6.2

9.3

20.4

6.0

2.0
3.53.93.3

11.5

1.4

9.0

13.0

0

5

10

15

20

25

ad
ap

t

ca
p

ac
it

o
r

cf
d

3
_v

1

cf
d

3
_v

2

cl
o

su
re

co
n

v2

co
p

y_
vs

_
p

tr

cr
n

ic
h

d
if

f

d
ila

te

d
ir

ic
h

d
o

tp
ro

d

d
o

tp
ro

d
_

v2

ed
it

d
is

t

fd
td

ff
t2

d

ff
t2

d
_

v2

fi
n

ed
if

f

fi
r_

1
d

ga
u

ss

gr
id

_i
te

ra
te

h
yp

o
te

n
u

se

la
tn

rm

m
o

n
te

_
ca

rl
o

n
b

o
d

y1
d

n
b

o
d

y3
d

rg
b

2
yu

v

rg
b

2
yu

v_
v2

se
id

el

su
b

b
an

d
_

2
d

tr
id

ia
go

n
al

ge
o

. m
ea

n

Sp
ee

d
u

p

93 167 129 76 28 113 220 68 88

Figure 16. Speedups of C code generated by MATISSE vs MATLAB code when running on the PC.

0

2

4

6

8

10

12

14

16

18

20

2
5

6
x

5
1

2

50
0

 x
 1

0
0

0

1
0

0
0

 x
 2

0
0

0

1
0

24
 v

er
ti

ce
s

2
0

48
 v

er
ti

ce
s

4
0

96
 v

er
ti

ce
s

2
0

0
0

 x
 1

0
0

0

4
0

0
0

 x
 2

0
0

0

8
0

0
0

 x
 4

0
0

0

3
0

0
x3

0
0

20
0

0x
2

0
0

0

40
0

0x
4

0
0

0

5
1

2
 c

h
ar

s

4
0

96
 c

h
ar

s

8
1

92
 c

h
ar

s

5
1

2
x5

1
2

x1
5

5
1

2
x5

1
2

x3
2

1
0

24
x5

1
2

x3
2

10
2

4x
1

0
2

4
x3

2

4
5

0
x4

5
0

20
0

0x
2

0
0

0

40
9

6x
4

0
9

6

4
0

96
 b

o
d

ie
s

8
1

92
 b

o
d

ie
s

16
3

84
 b

o
d

ie
s

5
1

2
 b

o
d

ie
s

1
0

24
 b

o
d

ie
s

1
5

36
 b

o
d

ie
s

G
eo

. M
ea

n

capacitor closure crnich dirich editdist fdtdt finediff nbody1d nbody3d

Sp
ee

d
u

p
 MATISSE MEGHA

184 170
49

168
60

Figure 17. Speedups of the performance of the C code generated by MATISSE and MEGHA [17] vs.
MATLAB execution when considering the execution of the benchmarks in a desktop PC.

The closure example is dominated by matrix multiplication and as both MATLAB
and MEGHA use BLAS to perform matrix multiplications, the performance is
roughly the same (Prasad et al. [17] did not present results for closure, but men-
tioned in the paper that the execution time was the same as MATLAB). As another
use case, we ran the same benchmarks using a modern PC (with an AMD A10-
7850K, 4.10 GHz, from 2014). There were differences in speedups of more than
160% on some of the individual benchmarks with larger datasets (both ways, either
faster or slower), showing that the speedups can change significantly between CPUs.
However, we obtained a similar geometric mean speedup (8.0).

5.4 MATISSE Techniques

We studied the impact of four techniques used in MATISSE. Table 4 presents the
techniques and identifies in which benchmarks there was a larger impact. We pre-
sent the results for each technique in the next subsections.

Matrix Views Results

The benchmark copy_vs_ptr is a synthetic benchmark used to test the potential of
using views with pointers instead of views by copy (see Section 4.2). The use of
views with pointers allowed MATISSE to generate C code with performance im-
provements of 1.8, 1.4 and 1.5, for the PC, ODROID, and BeagleBoard, respec-
tively. We believe the higher improvements on the PC are due to a higher overhead
for copying data in this system. After enabling views with pointers, the PC also
achieved better performance for closure (1.6), dotprod (1.3), fdtd (1.3) and
nbody3d (1.3). However, the improvements were negligible for the other bench-
marks.

Third-Party Libraries and Target-Specific Parameters

The use of optimized third party libraries is essential to generate competitive code,
e.g., in terms of performance. For instance, the benchmark closure spends most of
its execution time in matrix multiplication operations, and can run orders of magni-
tude slower if instead of BLAS we use a simple, straightforward, version of matrix
multiplication (e.g., 94 times slower on PC when N is 1,024).

Table 3. Execution time for MATLAB programs (running with the Mathworks MATLAB 2014a
environment) and for the binary code obtained by compiling the C programs generated by MATISSE

with GNU gcc –O3, all executed in a desktop PC.

Benchmark Size Execution Time (s)
MATLAB

code
C code gen-
erated by
MATISSE

capacitor 256512 16.6 0.92

5001,000 66.1 7.9

1,0002,000 270 33.6

closure 1,024 vertices 0.8 0.68
2,048 vertices 5.6 5.3
4,096 vertices 44.3 43.4

crnich 2,0001,000 0.6 0.08

4,0002,000 2.4 0.31

8,0004,000 9.4 1.6

dirich 300300 1.3 0.16

2,0002,000 59.6 7.2

4,0004,000 238 28.4

editdist 512 chars 0.6 0.0033
4,096 chars 37.8 0.22
8,192 chars 150 0.90

fdtdt 51251215 189 20.0

51251232 404 43.3

1,02451232 810 85.0

1,0241,02432 1629 170

finediff 450450 0.01 0.00066

2,0002,000 0.2 0.030

4,0964096 1.0 0.16

nbody1d 4,096 bodies 19.7 5.6
8,192 bodies 80.2 19.1

16,384 bodies 249 90.2
nbody3d 512 bodies 42.8 10.7

1,024 bodies 171 46.1
1,536 bodies 379 103

Table 4. Techniques whose impact was studied, and the benchmarks mostly impacted by them.

Technique Benchmarks
Matrix Views copy_vs_ptr, closure, dotprod, fdtd, nbody3d
3rd Party Libraries (BLAS) closure, nbody3d
Element-Wise Mapping capacitor, cfd3_v2, hypotenuse, nbody1d
Intrinsics capacitor, crnich, hypotenuse, nbody1d

Figure 18 shows the impact on speedup of the BLAS version of the closure bench-
mark over a simple implementation for different input sizes. Using the library for
certain input sizes can cause slowdowns. However, the threshold to decide if it is
more advantageous to use BLAS changes with the target platform: on the PC, the
use of BLAS provides clear speedups when the input size is greater or equal than 16,
but on the BeagleBoard, for an input size of 32 it is still slower to use BLAS. The
speedup using BLAS in the PC decreases from 2.6 to 1.3 for values of N between
16 and 32. When we observe the behavior of both implementations separately, the
behavior of the simple algorithm is more predictable, while the behavior using
BLAS is more dependent on the data sizes. BLAS is a very complex and highly op-
timized package, whose internals can change from version to version.

Another benchmark which heavily uses matrix multiplications is nbody3. For this
benchmark, if we disable the threshold and only use BLAS (i.e., disable the use of
the simple algorithm for small matrices), we have a 9% performance degradation for
the tested input sizes as result.

Our approach allows the specification of strategies in LARA to guide the compiler
about the use of a certain implementation. In addition, one can specify a LARA
strategy that inserts code rules to decide at runtime about the implementation to use.

0

1

2

3

2 4 8 16 32 64 128

Sp
e

ed
u

p

Input size (N)

Core2Quad Odroid BeagleBoard

Figure 18. Speedup of closure using BLAS over the use of simple implementations for matrix multi-
plication according to data sizes.

Element-Wise Mapping Operations

If a program spends a significant amount of time using element-wise operations,
transforming such operations to for loops can yield performance improvements (see
Table 5). The benchmark hypotenuse (see Figure 13) spends most of its execution
time doing element-wise operations, and can be used as an indicator of the potential
improvement we can obtain from such transformation. In the case of the PC and
ODROID, we obtained a speedup of 3.7 and 3.2, respectively. In the Beagle-
Board, the benchmark achieved a significantly lower gain, 1.6. Inspecting the as-
sembly of this benchmark, we concluded that the higher speedups in the PC and
ODROID come from automatic vectorization of the generated for loops, using spe-
cial instructions available in the processors (SSE in the case of PC, and NEON in the
ARM Cortex-A15 used in the Exynos 5410 of the ODROID board). As the Beagle-
Board processor does not have such instructions, the speedup is lower, and comes
mostly from the lower overhead in function calls and avoiding the creation of tem-
porary variables.

Table 5. Speedups obtained when applying the element-wise to for transformation.

Benchmark
Speedups

PC ODROID BeagleBoard

capacitor 1.3 1.0 1.0
cfd3_v2 1.3 1.0 1.0
hypotenuse 3.7 3.2 1.6
nbody1d 1.8 1.1 1.2

MATISSE Intrinsics

On the PC, the use of the MATISSE intrinsics has noticeable impact in the perfor-
mance, while in the other platforms there are virtually no difference (see Table 6).
We believe this happens because current intrinsics are related to avoiding setting

newly allocated memory (matisse_new_array_from_matrix). As in the PC the cost
of memory operations is higher when compared with the other tested platforms, this
kind of optimizations are more noticeable.

Table 6. Speedups obtained when using MATISSE intrinsics.

Benchmark
Speedups

PC ODROID BeagleBoard

capacitor 1.5 1.04 1.04
crnich 1.3 1.02 1.02
hypotenuse 1.3 1.14 1.01
nbody1d 1.3 1.06 1.02

5.5 Overview

The evaluation and results presented in this section show the status of the MATISSE
compiler framework, and the advantages of the implemented techniques. We have
shown that having the flexibility to specify the type of any variable (as opposed to
only the inputs) can have significant impact in some cases, and can aid the type in-
ference system. Each of the tested techniques provide benefits, that when used to-
gether allow MATISSE to generate efficient code while providing flexibility in the
code generation.

6. RELATED WORK

Given the importance of the MATLAB runtime support there have been research
efforts to improve the execution of JIT MATLAB compilers. A recent example is
the McVM [18] which performs function specialization based on the runtime
knowledge of the types in function calls. Yet, the need to avoid a MATLAB runtime
system in most embedded systems has led to efforts on how to best translate
MATLAB programs into equivalent C code, see, e.g., [19][20].

The translation of MATLAB to other programming languages is not recent.
DeRose and Padua proposed the FALCON environment [21][22][23][24][25] to
translate MATLAB to FORTRAN90 code. They leverage on an aggressive use of
static and type inference for base types (doubles and complex) as well as shape (or
rank) for the matrices. Other researchers have explored the reuse of storage for array
variables across a MATLAB code thus reducing the memory footprint of the corre-
sponding C reference code [19]. Joisha et al. [16][26] and Olmos et al. [27] present
additional type and shape inference techniques. Researchers have also relied on a
mix of type inference approaches and user’s provided information. For instance,
[28][29] use annotations to specify data types and shapes and simple type inference
analysis and target VHDL code specification for hardware synthesis onto FPGAs.

The Sable Lab at McGill University have done extensive work around the
MATLAB language [30], including an AOP-extension [31], a virtual machine [32]
and code generators for several languages, such as Fortran95 [33] and X10 [34].
They present several analysis and transformations relevant to our work, some of
them, e.g., kind analysis [35], and language simplification [36], we plan to integrate
in MATISSE in a near future.

Sharma et al. [37] explore the parallel capabilities MATLAB currently offers out-
of-the-box (e.g., parfor). They focus on using MATLAB on a cluster environment
and on the use of MPI, and do not target embedded systems.

We specifically note that our approach is focused on embedded implementations
of the MATLAB programs. In this context, an efficient translation to an implemen-
tation language (mainly C) is needed. One of the possibilities is to consider a subset
of MATLAB allowing feasible and efficient static compilation. One example using
such a subset is the embedded MATLAB (a subset of MATLAB) to C code transla-
tion previously existent in the MathWorks Real-Time Workshop [38], which sup-
ported embed annotations with MATLAB code to achieve C code implementations
for embedded systems [39]. The MATLAB Coder [2] is a more recent Mathworks
solution for MATLAB to C compilation. They support a large subset of MATLAB,
and allow the code to be customized through directives and options. However, the
customization is fairly coarse-grained, and finer control (e.g., addressing types,
shapes, and target) is supported by direct modification of the MATLAB source code.
When dealing with the myriad of target architectures and toolchains used in/for em-
bedded systems, this approach presents a low level of flexibility, e.g., as the style of
the C code generator might need to be tuned to the toolchain as is the case when
targeting C to hardware compilers.

Languages similar to MATLAB have been proposed, being Scilab [11] and Octave
[10] possibly the most used ones. Related to our goals is Sci2C [40], which trans-
lates Scilab to C and focus entirely on embedded systems. It is completely depend-
ent on annotations embedded in the Scilab code to specify data sizes and precisions.
MATISSE distinguishes from Sci2C as it is able to generate C code even without
annotations, and specialization of the generated C code can be achieved without
modifying the original code (MATLAB, in our case). Furthermore, Sci2C requires
that the size of all arrays is fixed and statically known, while MATISSE allows dy-
namically allocated arrays whose sizes are unknown at compile time.

Recently and orthogonally to this work, there have been approaches to translate
MATLAB (and its main clones) to languages suitable to multicore and/or GPU ar-
chitectures. For instance, MiX10 [41] compiles MATLAB to IBM’s X10 language,
designed for high performance computing. Their work takes advantage of
MATLAB’s parfor and X10 parallel features. MEGHA [17] is a compiler which
processes MATLAB/Octave scripts and generates CUDA and C/C++ code. ME-
GHA uses heuristics to decide which portions of the code should be executed on the
CPU and which should be offloaded to the GPU. Chun-Yu Shei et al. [42] presents
another MATLAB/Octave to CUDA compiler, which generates both C++ and
CUDA code. However, unlike MEGHA, portions of the resulting code remain in
MATLAB. In the context of the MATISSE compiler, Reis et al. [43][44] present the
first steps of an OpenCL generator for MATISSE which relies on OpenACC-based
directives. Although their focus is on OpenCL generation aware of the target archi-
tecture (e.g., CPU, GPU, FPGA), in particular in embedded computing domains, the
current version of the OpenCL code generator is not aware of the target architecture.

The ALMA project [20] developed a toolchain for compiling annotated Scilab [11]
code to MPSoC (Multi-Processor System-on-Chip) architectures. They consider the
exploitation of coarse- (task-level) and fine-grained (instruction-level) parallelism.
A frontend of the toolchain compiles subsets of Scilab extended with a prepro-
cessing language allowing declaration of variables, specification of static types, and
maximum sizes of vectors and matrices, and with annotations to support the extrac-
tion of parallelism. The result is annotated C code which is then compiled by other
tools to the target architectures. The Scilab compiler includes high-level, platform
independent, optimizations (e.g., function inlining/outlining, algebraic optimiza-
tions, operator strength reduction, loop invariant code motion, constant propagation

and folding, copy propagation, and common subexpression elimination). However,
the approach postpones to C compilers some of the optimizations specific to the
target architecture, such as loop parallelization and data layout optimizations. Our
approach differs from the one proposed by ALMA as it relies on a separation of
concerns provided by LARA specifications and on the multi-target exploration at
higher-levels and our intention is to generate code (e.g., C code) as much as possible
tuned to the target architectures and following toolchains.

In this work we described a mechanism for conveying information about types and
shape/rank similar in spirit with the notion of Aspects [6]. Previous work has pro-
posed aspect-oriented extensions to MATLAB [45] and an aspect-oriented code
transformation language for MATLAB [46]. Other authors have explored aspect-
oriented approaches for MATLAB [31][47], being AspectMatlab++ one of the most
relevant approaches. AspectMatlab++ is an extension to AspectMatlab and provides
an AOP approach for MATLAB in the context of scientific programming. It pro-
vides support to patterns such as loop bodies, function calls, patterns embedded in
comments, types, dimension, etc. AspectMatlab++ provides MATLAB code woven
with the aspects and it is not focused on assisting the generation of other target lan-
guages.

To the best of our knowledge the AOP extensions to MATLAB do not consider
the use of aspects to specify complementary information that can be used by com-
pilers to produce more efficient implementations. Some of the benefits of using
AOP extensions to MATLAB have been already exposed by a number of software
metrics [48]. However, the inclusion of the versatility of LARA [6][7][8] on provid-
ing strategies for MATLAB tools adds further suitable dimensions to the use of
AOP approaches in the context of the MATLAB programming language, for in-
stance, on the application of source-to-source transformations as the ones presented
by Birkbeck et al. [49].

MATISSE differs from the previous approaches in several aspects. First, it focuses
on exploring several C implementations for multitarget solutions, unlike other ap-
proaches which have a larger focus on the MATLAB language itself and how to
generate a single correct/efficient implementation [30]. In the multitarget context, it
is very important to have a high degree of customization of the generated code. As
an example, MATISSE allows users to define the type of any variable in the code,
unlike Mathworks’ MATLAB Coder, which only allows to set the types of the func-
tion inputs [2]. MATISSE main goal is to customize the output code without modi-
fying the source code, hence the use of AOP concepts to control the customization.
Furthermore, since MATISSE mainly targets embedded systems, it considers that
the generated code will be run in environments where a MATLAB-compatible
runtime might not be available, unlike hybrid approaches [42]. Orthogonally to the
work presented in this paper, the MATISSE compiler is being extended with
OpenCL generation [50], also leveraging the complementary information that can be
provided by LARA aspects.

7. CONCLUSION

This paper presented MATISSE, a multitarget/multitoolchain framework for compil-
ing MATLAB to lower level programming languages such as C. MATISSE relies on
LARA aspects for specifying data types, shapes, and code instrumentation and spe-
cialization. The compiler includes a type and shape inference stage and is able to
generate MATLAB and C code. We presented the general flow of the tool and de-

scribed a number of transformations and optimizations performed by the compiler.
The experiments reveal the flexibility of our approach and promising performance
results, e.g., achieving a geometric mean speedup of 13 over execution in
MATLAB when considering 31 benchmarks. Furthermore, transformations such as
detecting element-wise operations and operations such as matrix multiplications
highlight the efficiency of using a higher abstraction level such as the one provided
by MATLAB as a starting point for specialized implementations in C.

Ongoing work is focused on further optimizations for the C generator and on the
development of additional targets for the C code, such as C tailored for hardware
generation through High-Level Synthesis tools, and on enhancing the OpenCL
backend for multi-CPUs, GPUs and FPGAs.

ACKNOWLEDGMENTS

This work was partially funded by project REAL TIME NORTE-07-0124-FEDER-000062 which
was financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under
the National Strategic Reference Framework (NSRF), through the European Regional Development
Fund (ERDF), and by national funds, through the Portuguese funding agency, Fundação para a
Ciência e a Tecnologia (FCT). The authors would like to acknowledge Luís Reis and Tiago Carvalho
regarding their help on topics addressing the code generation and the LARA language, respectively.

REFERENCES

[1] MATLAB – the Language of Technical Computing. The MathWorks, Inc.,
http://www.mathworks.com/.

[2] MATLAB Coder: Generate C and C++ code from MATLAB code. The MathWorks,
Inc, 2012.

[3] J. Bispo, P. Pinto, R. Nobre, T. Carvalho, J. M. Cardoso, and P. C. Diniz, “The MA-
TISSE MATLAB compiler,” in 11th IEEE International Conference on Industrial In-
formatics (INDIN), 2013, pp. 602–608.

[4] J. Bispo, L. Reis, and J. M. Cardoso, “Techniques for efficient MATLAB-to-C compi-
lation,” in Proceedings of the 2nd ACM SIGPLAN International Workshop on Librar-
ies, Languages, and Compilers for Array Programming, 2015, pp. 7–12.

[5] J. D. Gradecki and N. Lesiecki, Mastering AspectJ: aspect-oriented programming in
Java. NY, USA: John Wiley & Sons, 2003.

[6] J. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk, R. Nobre, P. Diniz, and Z. Pe-
trov, “LARA: an aspect-oriented programming language for embedded systems,” in
Proceedings of the 11th annual international conference on Aspect-oriented Software
Development, Potsdam, Germany, 2012, pp. 179–190.

[7] J. M. P. Cardoso, P. Diniz, J. G. Coutinho, and Z. Petrov, Compilation and Synthesis
for Embedded Reconfigurable Systems. Springer, 2013.

[8] J. M. Cardoso, J. G. Coutinho, T. Carvalho, P. C. Diniz, Z. Petrov, W. Luk, and F.
Gonçalves, “Performance-driven instrumentation and mapping strategies using the
LARA aspect-oriented programming approach,” Software: Practice and Experience,
2014.

[9] MATISSE. http://specs.fe.up.pt/tools/matisse/.
[10] Octave. http://www.gnu.org/software/octave/.
[11] Scilab. Scilab Enterprises S.A.S, http://www.scilab-enterprises.com/.
[12] G. Kiczales, “Aspect-oriented programming,” ACM Computing Surveys (CSUR), vol.

28, no. 4es, p. 154, Dec. 1996.
[13] M. Lam, R. Sethi, J. D. Ullman, and A. Aho, Compilers: principles, techniques, and

tools. Addison-Wesley, 2006.
[14] Symja - Java Computer Algebra Library. .

[15] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Don-
garra, I. Duff, S. Hammarling, G. Henry, and others, “An updated set of basic linear
algebra subprograms (BLAS),” ACM Transactions on Mathematical Software, vol. 28,
no. 2, pp. 135–151, 2002.

[16] P. G. Joisha and P. Banerjee, “A translator system for the MATLAB language,” Soft-
ware: Practice and Experience, vol. 37, no. 5, pp. 535–578, 2007.

[17] A. Prasad, J. Anantpur, and R. Govindarajan, “Automatic compilation of MATLAB
programs for synergistic execution on heterogeneous processors,” in ACM Sigplan No-
tices, 2011, vol. 46, pp. 152–163.

[18] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge, “Optimizing MATLAB
through just-in-time specialization,” in Compiler Construction, 2010, pp. 46–65.

[19] P. G. Joisha and P. Banerjee, “Static array storage optimization in MATLAB,” in
ACM SIGPLAN Notices, San Diego, CA, USA, 2003, vol. 38, pp. 258–268.

[20] J. Becker, T. Stripf, O. Oey, M. Huebner, S. Derrien, D. Menard, O. Sentieys, G.
Rauwerda, K. Sunesen, N. Kavvadias, and others, “From Scilab to high performance
embedded multicore systems: the ALMA approach,” in Digital System Design (DSD),
2012 15th Euromicro Conference on, 2012, pp. 114–121.

[21] G. Almasi and D. A. Padua, MaJIC: A MATLAB just-in-time compiler. Springer, 2001.
[22] L. De Rose and D. Padua, “Techniques for the translation of MATLAB programs into

Fortran 90,” ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 21, no. 2, pp. 286–323, Mar. 1999.

[23] L. De Rose, K. Gallivan, E. Gallopoulos, B. Marsolf, and D. Padua, “FALCON: A
MATLAB interactive restructuring compiler,” in Languages and Compilers for Paral-
lel Computing, Springer, 1996, pp. 269–288.

[24] L. De Rose and D. Padua, “A MATLAB to Fortran 90 translator and its effective-
ness,” in Proceedings of the 10th international conference on Supercomputing, 1996,
pp. 309–316.

[25] L. A. De Rose, “Compiler techniques for MATLAB programs,” Citeseer, 1996.
[26] P. G. Joisha and P. Banerjee, “An algebraic array shape inference system for

MATLAB®,” ACM Transactions on Programming Languages and Systems (TOP-
LAS), vol. 28, no. 5, pp. 848–907, 2006.

[27] K. Olmos and E. Visser, “Turning dynamic typing into static typing by program spe-
cialization in a compiler front-end for Octave,” in Source Code Analysis and Manipu-
lation, 2003. Proceedings. Third IEEE International Workshop on, 2003, pp. 141–150.

[28] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Parallelization of Matlab ap-
plications for a multi-FPGA system,” in Field-Programmable Custom Computing Ma-
chines, 2001. FCCM’01. The 9th Annual IEEE Symposium on, Rohnert Park, CA,
USA, 2001, pp. 1–9.

[29] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, and R. Uribe, “Automatic con-
version of floating point MATLAB programs into fixed point FPGA based hardware
design,” in Field-Programmable Custom Computing Machines, 2003. 11th Annual
IEEE Symposium on, Napa, CA, USA, 2003, pp. 263–264.

[30] A. Casey, J. Li, J. Doherty, M. Chevalier-Boisvert, T. Aslam, A. Dubrau, N. Lameed,
A. Aslam, R. Garg, S. Radpour, and others, “McLab: an extensible compiler toolkit
for MATLAB and related languages,” in Proceedings of the Third C* Conference on
Computer Science and Software Engineering, 2010, pp. 114–117.

[31] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren, “AspectMatlab: An aspect-oriented
scientific programming language,” in Proceedings of the 9th International Conference
on Aspect-Oriented Software Development, NY, USA, 2010, pp. 181–192.

[32] N. A. Lameed, “Dynamic compiler optimization techniques for MATLAB,” McGill
University, 2013.

[33] X. Li, “Mc2For: a MATLAB to FORTRAN 95 compiler,” McGill University, 2014.
[34] V. Kumar and L. Hendren, “MiX10: Compiling MATLAB to X10 for high perfor-

mance,” in Proceedings of the 2014 ACM International Conference on Object Orient-
ed Programming Systems Languages & Applications, 2014, pp. 617–636.

[35] J. Doherty, L. Hendren, and S. Radpour, “Kind analysis for MATLAB,” in ACM SIG-
PLAN Notices, 2011, vol. 46, pp. 99–118.

[36] A. W. Dubrau and L. J. Hendren, Taming Matlab, vol. 47. ACM, 2012.
[37] G. Sharma and J. Martin, “MATLAB®: a language for parallel computing,” Interna-

tional Journal of Parallel Programming, vol. 37, no. 1, pp. 3–36, 2009.
[38] Real-Time Workshop: Generate C code from Simulink models and MATLAB code. .
[39] “Best Practices for a MATLAB to C Workflow Using Real-Time Workshop.” Nov-

2009.
[40] Scilab 2 C - Translate Scilab code into C code. .
[41] V. Kumar and L. Hendren, “First steps to compiling Matlab to X10,” in Proceedings

of the third ACM SIGPLAN X10 Workshop, New York, NY, USA, 2013, pp. 2–11.
[42] C.-Y. Shei, A. Yoga, M. Ramesh, and A. Chauhan, “MATLAB parallelization through

scalarization,” in 15th Workshop on Interaction between Compilers and Computer Ar-
chitectures (INTERACT), 2011, pp. 44–53.

[43] L. Reis, J. Bispo, and J. M. Cardoso, “Towards a multitarget C and OpenCL genera-
tion from MATLAB,” presented at the Compilers for Parallel Computing (CPC’15),
Imperial College, London, UK, 2015.

[44] J. Bispo, L. Reis, and J. M. Cardoso, “Multi-target C code generation from
MATLAB,” in Proceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming, Edinburgh, UK, 2014, p. 95.

[45] J. M. Cardoso, J. Fernandes, and M. Monteiro, “Adding aspect-oriented features to
MATLAB,” in workshop on Software Engineering Properties of Languages and As-
pect Technologies, Bonn, Germany, 2006.

[46] J. M. Cardoso, P. Diniz, M. P. Monteiro, J. M. Fernandes, and J. Saraiva, “A domain-
specific aspect language for transforming MATLAB programs,” in Domain-Specific
Aspect Language Workshop, part of AOSD, Rennes & Saint Malo, France, 2010, pp.
15–19.

[47] A. Bodzay and L. Hendren, “AspectMatlab++: annotations, types, and aspects for
scientists,” in Proceedings of the 14th International Conference on Modularity, 2015,
pp. 41–54.

[48] P. Martins, P. Lopes, J. P. Fernandes, J. Saraiva, and J. M. Cardoso, “Program and
aspect metrics for MATLAB,” in Computational Science and Its Applications–ICCSA
2012, Springer-Verlag, 2012, pp. 217–233.

[49] N. Birkbeck, J. Levesque, and J. N. Amaral, “A dimension abstraction approach to
vectorization in Matlab,” in Code Generation and Optimization, 2007. CGO’07. In-
ternational Symposium on, 2007, pp. 115–130.

[50] João Bispo, Luís Reis, and João M. P. Cardoso, “C and OpenCL generation from
MATLAB,” in 30th ACM Symposium on Applied Computing (SAC 2015), Salamanca,
Spain, 2015.

